Why nature never makes chiral twins – insights from cometary ice analogues and extra-terrestrial sample analyses


1 Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d’Azur, 06108 Nice
2 ISA, Department of Physics & Astronomy, Aarhus University, Aarhus, Denmark.
3 PIIM, CNRS UMR 7345, Aix-Marseille Université, Marseille, France

‘How did life choose its handedness?’ Just like our hands mirror each other, but cannot be superimposed on each other, amino acids and sugars exist in left- and right-handed forms. Even if there appears to be no biochemical reason to favor one enantiomer over the other, life on Earth uses almost exclusively left-handed amino acids and right-handed sugars. Several asymmetric processes have been proposed to induce chirality in molecular systems, but those focusing on stellar circularly polarized light (CPL) appear to us to be most encouraging. The astrophysical origin of homochirality is strengthened by i) the detection of L-enriched amino and D-enriched sugar acids in meteoritic samples [1], ii) the detection of CPL in several star-forming regions [2] as well as iii) experiments studying the interaction of UV CPL with prebiotically relevant chiral species [3].

In this talk, I will highlight significant results on our on-going cometary ice simulation experiments [4, 5] as well as on CD and anisotropy spectroscopy as a key tool to decipher the response of chiral molecules to UV CPL [6]. Experiments that use CPL require the knowledge of the chiroptical response of the targeted molecules prior asymmetric photoinduced processes to tune desired enantiomeric excesses. We recently recorded the first chiroptical spectra of amino acids recorded in the gas phase, where any asymmetry is solely determined by the genuine electric and magnetic transition dipole moments [7]. Moreover, our experimental results on propylene oxide – the first chiral molecule detected in interstellar space – may reveal the handedness of interstellar circular polarization at the dawn of molecular evolution. Moreover, I will present our major findings on recent asymmetric photochemical experiments to discuss whether stellar UV CPL could have induced a common chiral bias across molecular families. These will be complemented by long-awaited first asymmetric photolysis experiments on isoalvaline using our newly built tunable laser set-up.

Références


Acknowledgement: Support by the European Research Council under the EU’s HORIZON 2020 research & innovation programme [grant agreement 804144] is gratefully acknowledged.