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The Particularity of ISM Studies

ISM studies often rely on long chains of heterogeneous data

Experiments

Observations Models/Simulations

Our object of study impacts the way we work

Small samples.
Rather small teams.
Cosmology: large teams
on the same data
⇒ need standardized,
reproducible
uncertainties.

(Planck collaboration)
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An Example of a Nested Uncertainty Study

(Galliano et al., 2021)
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Objectives of the Workshop

1 Have a general discussion about uncertainties & their associated
methods.

2 Provide an overview of the way they are taken into account in the
different fields of ISMology ⇒ give grounded examples.

3 Give momentum to initiatives that could lead to a standardization of the
way they are taken into account and published.
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The Program of the Workshop

08:30–08:55 INTRODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL
08:30–08:40 Frédéric GALLIANO Motivations & objectives of the workshop - An example of a nested uncertainty

problem
08:40–08:50 Marie GUEGUEN A philosopher’s viewpoint on identifying, quantifying & communicating uncertainties
08:50–08:55 Everyone Discussion

08:55–10:00 QUANTIFYING EXPERIMENTAL & OBSERVATIONAL UNCERTAINTIES
08:55–09:05 Karine DEMYK An overview of the challenges of estimating experimental uncertainties
09:05–09:15 Marco MINISSALE Uncertainties in ice laboratory experiments
09:15–09:20 Everyone Discussion
09:20–09:30 Lucas EINIG Signal extraction from noisy line cubes: the problem of applying hyperspectral imag-

ing methods
09:30–09:35 Everyone Discussion
09:35–09:45 Nathalie YSARD Uncertainties in dust models
09:45–10:00 Everyone Discussion

10:00–10:30 COFFEE BREAK

10:30–11:20 PROPAGATING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING
10:30–10:40 Frédéric GALLIANO Techniques to propagate uncertainties through data processing
10:40–10:45 Everyone Discussion
10:45–10:55 Lise RAMAMBASON Challenges for topological models of the interstellar medium
10:55–11:00 Everyone Discussion
11:00–11:10 Erwan ALLYS Evaluating uncertainties for components separation from observational data
11:10–11:20 Everyone Discussion

11:20–12:00 HOW TO PUBLISH UNCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY
11:20–11:25 Pierre GRATIER Quoting and plotting errors, and accounting for their correlation with ancillary phe-

nomena
11:25–11:35 Everyone Discussion
11:35–11:40 Pierre GRATIER How to store and distribute this information
11:40–11:50 Everyone Discussion
11:50–12:00 Everyone Conclusion: what to do next?
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Marie Gueguen, Marie Słodowska Curie fellow 
Institut de Physique de Rennes 1 
PCMI,  26 Octobre 2022

Why are uncertainties 
so instrumental?  
A philosopher’s viewpoint 

@nwo.nl



• Astrochemistry is a young interdisciplinary field, that 
started with the detection of CH, CH , CN in the 
1940’s 


(McKellar, PASP, 52, 187 ,1940; Adams, Astrophysics J.,93,11,1941; Douglas 
& Herzberg ,93, 11,1941, Douglas & Herzberg  94, 381, 94, 381, 1941)

+

Astrochemistry 

@nwo.nl



• What characterizes young IDF: 


• Rapid collection of observational data that 
requires interpretation


• Theoretical and experimental progresses 
not always able to keep up with this rapid 
pace


                     => Non-predictive models.  

Astrochemistry 

@nwo.nl



• Partial representation


• Minimal modelling principle


• Construction: idealizations, approximations 
and simplifications 

What is a model?
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• Partial representation


• Minimal modelling principle


• Construction: idealizations, approximations 
and simplifications 


• Computational model: high epistemic opacity 
(= not an easy task to contribute which input 
data contribute the most to the model’s 
output)

What is a model?

@nwo.nl



Model

Model development in context of 
high uncertainties

Observations
?

@nwo.nl



Model


Model development in context of 
high uncertainties

Observations

Incomplete


Interpreted on the 
basis of uncertain data

Inherent uncertainties


…

?
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Model

Partial representation


Idealizations (chemical 
networks, type of chemistry, 

astrophysical conditions, etc..)

Uncertainties in the input


….


Model development in context of 
high uncertainties

Observations

Incomplete


Interpreted on uncertain 
data


Inherent uncertainties

…


?

@nwo.nl



• Non-predictive models: 


• Uncertainties higher on the theoretical side 
than on the observational side


• (Dis)agreement with observations not 
interpretable 

Astrochemistry 

@nwo.nl



• Non-predictive models: 


• But: identifying and reducing uncertainties is 
not only the path to predictivity, but it is also 
the only tool you have to break the epistemic 
opacity of your model and get a better 
understanding of what your model is sensitive 
to!


• It also allows you to target where experimental 
and theoretical progresses are the most 
needed.

Astrochemistry 



• Parametric uncertainties


• Model uncertainties 


• Unknown unknowns 

But which uncertainties for 
which task? 



Example 1: Ab initio calculations  
& rate coefficients

Uncertainties

PES

Dynamical calculations

Approximations



Example 1: Ab initio calculations  
& rate coefficients

Uncertainties

PES

Dynamical calculations

Approximations

Size of the grid, basis, fit



Example 1: Ab initio calculations  
& rate coefficients

Uncertainties

PES

Dynamical calculations

Approximations

Cross-sections, Collisional 
data 



Example 1: Ab initio calculations  
& rate coefficients

Uncertainties

PES

Dynamical calculations

Approximations
Born-Oppenheimer ?



Example 2: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 



Example 2: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 

ln k(T ) = α + βx(T)
-> α, β, σα, σβ  et ραβ



Example 2: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 

T range?



Example 2: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 

Arrhenius laws?



Example 2: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 
Missing chemistry? Missing physics? 



• Uncertainty Propagation: each reaction rate constant  / all parameters are 
randomly perturbed a large number of times according to a pre-definite 
probability distribution 


• Sensitivity analysis (Saltelli, 2020): study of how uncertainty in the output of a 
model (numerical or otherwise) can be apportioned to different sources of 
uncertainty in the model input


• identify correlations between inputs and outputs

ki

Example 1: Low-T reaction rate constants 



Saltelli et al., 2019, Env. Mod. 
&Softw 114

Uncertainties coming from heterogenous sources are propagated in the model


Generates an empirical distribution of the output of interest


UC in the output decomposed according to source 




Saltelli et al., 2019, Env. Mod. 
&Softw 114



Example 1: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 



Example 1: Low-T reaction rate 
constants 

Uncertainties

Parametric

Extrapolation

Model

Unknown unknowns 



Loison, Hickson, Hebrard and Dobrijevic, 2014



Conclusion
• Why are uncertainties instrumental? Because exploiting uncertainties 

helps to better understand a model that would otherwise remain a 
black box - especially what the model is sensitive too


• Target theoretical and experimental progresses 
thanks to uncertainty propagation methods and 
sensitivity analysis.


and what is negligible

• Optimization of your model in terms of 

computational cost.

• Forcing a non-predictive model to match observations bu tuning 

parameters not empirically constrained amounts to increasing its 
epistemic opacity and to loose your two main sources of information! 


• UQ methods and sensitivity analysis: important interdisciplinary 
facilitators both in terms of uncertainty communication and of 
targetting where experimental and theoretical progresses will pay off 
the most.  (Saltelli, 2020,
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First Session:
Quantifying Experimental & Observational Uncertainties



Karine Demyk

Overview of the challenges of 
estimating experimental 
uncertainties

K. Demyk, PCMI, workshop « Uncertainties », October, 2022



How do we / should we do?
• list all sources of uncertainties and errors


• calibrate the experiments


• estimate the uncertainties/errors coming from


• measurements 


• data reduction


• data modelling / fitting needed to extract the studied quantity


• explain all choices made, keep track of all steps


• not always easy to quantify! 


• highly dependent on the experiment



Example 1: measurement of opacities (MAC)

• From spectroscopic measurements on a population of grains embedded in a 
matrix 


• spectrometer stability


• uncertainty on the sample mass
X35
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10 100 1000
 λ (µm)
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M
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Mg2SiO4

ΔMAC =
δT
T

×
S
m

MAC = −
S
m

× ln(T )

ΔMACm = MAC(λ) ×
δm
m

T = transmittance

S =  sample surface

m = sample mass



Example 1: calculation of optical constants

A number of assumptions have to be made :

➡ To relate the MAC to (n,k) : 

• grain size

• grain shape


➡ To calculate (n,k) knowing the MAC 

• value of the refractive index in the visible


➡ Effect of a possible agglomeration in the pellet ? 50 nm



Example 1: estimation of the error on the optical constants 

[Demyk+2022]
K. Demyk, PCMI, October, 2022

Error on grain shape :
•prolate vs oblate 

•a/b varies by ± 40%

< 8 %3-4%

5 %

Error on nvis : 
•nvis varies by ± 5%

< 4 %< 2 %

10-15%

3-5%
5-13%

Error on grains size (Rayleigh 
limit assumption): 
•DDA calculations

•prolate grains

•measured size distribution

•Mg2SiO4 silicate from Jäger+2003



Example 1 : Error estimation on Mg-rich silicate optical constants: 

[Demyk+2022]
K. Demyk, PCMI, October, 2022

X35

10 K

100 K

200 K

300 K

10 100 1000
 λ (µm)

0.01

0.10

1.00

k

X35

10 K

100 K

200 K

300 K

10 100 1000
 λ (µm)

1.0

1.5

2.0

2.5

3.0

3.5

n
Quadratic sum of the errors ⇒ total uncertainty on n and k

 ~ 4 - 6% , dominated by uncertainty on nvis

: 𝜆 < 30 µm:  ~5% (up to ~13% in the silicate feature , dominated by grain size uncertainty

 𝜆 > 30 µm: 5 to 25 % depending on sample, dominated by grain shape

δntot
δktot



Example 2 : determination of anahormanicity factor
• From spectroscopic measurements on a population of grains embedded 

in a matrix at varying temperature: 13 - 723 K

• baseline subtraction

• peak position 

determination

• fit the λpeak - T relation



Example 2: determination of anahormanicity factor
• data reduction: 

• impact of the baseline 

determination



Example 2: determination of anahormanicity factor

• data modelling: method to determine the 
band position and width

• peak maximum

• area-weighed peak maximum

• spectral decomposition with 

gaussians, lorentzians 



Example 2: determination of anahormanicity factor



TITRE DE LA PRÉSENTATION
> TITRE DE LA PARTIE

UNCERTAINTIES IN 
ICE LABORATORY EXPERIMENTS

Marco Minissale



26/10/2022
Marco Minissale - PCMI - Paris
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What we get?

- Flux of atom/molecules
- Sample temperature 
- Flux of particles (photons, 
electrons, ions, …)

What we 
measure?

- Reaction rates
- Thermal and non-

thermal desorption 
rates

- Diffusion constants
- *

* Non-exhaustive list 
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3

What we get?

- Flux of atom/molecules
- Sample temperature 
- Flux of particles (photons, 
electrons, ions, …)

Ingredients: 
what we need?

- Flux of atom/molecule
- Sample temperature
- Flux of particles 

(photons, electrons, 
ions, …)

- …*

Calibration and 
systematic errors

How we 
measure?

- Thermocouples 
- Mass and Infrared 

spectroscopy
- …*

Instrumental errors
(i.e. Accuracy and 

sensitivity)

What we 
measure?

- Reaction rates
- Thermal and non-

thermal desorption 
rates

- Diffusion constants
- *

Model uncertainty –
Which parameters and 

physical-chemical 
processes?

* Non-exhaustive list 



26/10/2022
Marco Minissale - PCMI - Paris

4

Calibration and 
systematic errors

Instrumental errors
(i.e. Accuracy and 

sensitivity)

Model uncertainty –
Which parameters and 

physical-chemical 
processes?

FORMOLISM setup, CY Cergy-Paris University

Analysis and interpretation of results

Ex
pe

rim
en

ta
l u

nc
er

ta
in

ty



Two examples: 

-Diffusion/desorption of oxygen atoms on cold 
surfaces

- Reaction on solid-phase: H2CO+O

26/10/2022
Marco Minissale - PCMI - Paris

5



26/10/2022
Marco Minissale - PCMI - Paris

From Minissale, Congiu & Dulieu A&A 2016
6

Both O and O2
desorb from the 

surface 

TP-DED: Temperature Programmed –During Exposure Desorption

T decreases as a 
function of time



26/10/2022
Marco Minissale - PCMI - Paris

From Minissale, Congiu & Dulieu A&A 2016
7

Both O and O2
desorb from the 

surface 

O sticks, diffuse
and forms O2

that desorbs from
the surface 
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From Minissale, Congiu & Dulieu A&A 2016
8

Both O and O2
desorb from the 

surface 

O sticks, diffuse
and forms O2

that desorbs from
the surface 

O2 starts to 
stick (O3 can 
be formed)



26/10/2022
Marco Minissale - PCMI - Paris

From Minissale, Congiu & Dulieu A&A 2016
9

Both O and O2
desorb from the 

surface 

All reactants
are absorbed
on the surface

O sticks, diffuse
and forms O2

that desorbs from
the surface 

O2 starts to 
stick (O3 can 
be formed)



Modeling diffusion/desorption kinetics
26/10/2022

Marco Minissale - PCMI - Paris

Diffusion

Desorption

Fitting TP-DED experiments, we can find the 
couple Ediff-Edes

10

Experimental 
parameter

Desorption 
rate

Reaction 
rate

Flux



Modeling diffusion/desorption kinetics
26/10/2022

Marco Minissale - PCMI - Paris

From Minissale, Congiu & Dulieu MNRAS 2016

Edif/Edes

11

Edif vs. Edes obtained for O and
N atoms. Open symbols
represent previous estimations of
Edes for O atoms

Which ratio is the most appropriate?
We need input from other experiments to evaluate the ratio



H2CO+O reaction in solid-phase
26/10/2022

Marco Minissale - PCMI - Paris

12

In gas phase H2CO+O 
H2O+CO

Activation barrier= 1560 K

CO2+H2

Chang & Barker (1979) 
Wellman et al.(1991)

12



H2CO+O reaction in solid-phase
26/10/2022

Marco Minissale - PCMI - Paris

13

In gas phase H2CO+O 
H2O+CO

Activation barrier= 1560 K

CO2+H2

Chang & Barker (1979) 
Wellman et al.(1991)

13

The presence of oxygen atoms
makes harder the estimation of
activation barrier in solid-phase

- The O atoms are mixed with
O2 molecules.

- O atoms diffuse quite fast on
surface

- O atoms can react each
other



H2CO+O reaction in solid-phase
26/10/2022

Marco Minissale - PCMI - Paris

14Minissale et al., A&A 2015
14

Temperature programmed 
desorption

Infrared spectoscopy
results @55K



H2CO+O reaction in solid-phase
26/10/2022

Marco Minissale - PCMI - Paris

15
15

Source of uncertainty: fluxes of O and 
O2 (f), H2CO initial coverage, chemical 
desorption (e), desorption parameters 

(n, Edes), diffusion constant (Ediff)

Activation energy
Simulation of
experimental
results

Eley-Rideal Langmuir-
Hinshelwood



H2CO+O reaction in solid-phase
26/10/2022

Marco Minissale - PCMI - Paris

16Minissale et al., A&A 2015
16

• Two coupled parameters: H2CO+O barrier and O diffusion
• The pure thermal O diffusion estimated to be between 

900 and 600 K

If O diffusion 750 K,
H2CO+O barrier=335 K

Exp uncertainty ~ 10%
“Model” uncertainty ~ 30%



Diffusion: oxygen atoms

26/10/2022
Marco Minissale - PCMI - Paris

17
Minissale et al., PRL 2013
Minissale et al., A&A 2015

Tunneling 
regime

Transition

Thermal hopping
regime

O atoms start
to desorb

17



26/10/2022
Marco Minissale - PCMI - Paris

18

Experimental uncertainty 
can be “easily” taken 
into account and 
estimated or reduced

Ingredients: 
what we need?

Experimental and 
systematic errors

How we 
measure?

Instrumental errors

What we 
measure?

Model uncertainty –
which physical-chemical 

processes?

* Non-exhaustive list 

Often the main source of 
uncertainty comes from 
coupled parameters / 
coupled processes 



Desorption induced
by chemistry

26/10/2022
Marco Minissale - PCMI - Paris

DED 
(During Exposure Desorption) 

O2 ices exposed to D atoms

19



Thank you for your attention

26/10/2022
Marco Minissale - PCMI - Paris

20



Signal extraction from noisy line cubes
The problem of applying hyperspectral imaging methods

Lucas Einig



ORION-B dataset

13CO (1-0) line C17O (1-0)

In
te

gr
al

S
pe

ct
ru

m

Lucas Einig Signal extraction from noisy line cubes 2 / 7



Low rank asumption based methods

f̂ , ĝ = argmin
f , g

||I − g(Θ)||22 s.t. Θ = f(I) and dimΘ ≪ dim I

Lucas Einig Signal extraction from noisy line cubes 3 / 7



Redundancy between channels

Hyperspec. data Indian Pines 13CO (1-0) line
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Lucas Einig Signal extraction from noisy line cubes 4 / 7



Intrinsic dimension estimation

We propose to estimate the intrinsic dimension of a dataset using
the well known “elbow method” in a non-linear framework.

Indian pines (dim ≈ 4)

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Bottleneck size

M
ea

n
A

bs
ol

ut
e

D
ev

ia
tio

n

13CO (1-0) (dim > 25)

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Bottleneck size

M
ea

n
A

bs
ol

ut
e

D
ev

ia
tio

n

Figure: Mean absolute deviation between input and reconstructed data.

Lucas Einig Signal extraction from noisy line cubes 5 / 7



Limitations of low rank methods

Limitations

The methods based on a low rank assumption are very
suitable for continuum cubes but more limited for line cubes.

The higher the intrinsic dimension, the lower the redundancy
and the more complex the signal extraction.

Concerned methods

These conclusions apply to any method based on a low rank
assumption, including

Principal Component Analysis (PCA).

Autoencoder neural network (AE).

Low rank tensor decomposition.

Lucas Einig Signal extraction from noisy line cubes 6 / 7



Improved neural network for molecular line cubes

Developed solutions

Adapt the network architecture to the data

Use prior knowledge

Figure: Example of noisy and denoised data with the Local autoencoder
with prior knowledge.

Lucas Einig Signal extraction from noisy line cubes 7 / 7



  

(A very small part of the)
Uncertainties in the ISM grain models

N. Ysard (IAS, Orsay)

Mukai et al. (1992)
Koehler et al. (2011, 2012)
Min et al. (2016)
Ysard et al. (2018)



  

Introduction

Basics of all dust models

◾ Chemical composition
 → m = n + ik : from the lab ? Empirical ?
 → composite grains ?
 → inclusions, ice mantle ?

◾ Structure
 → compact vs. porous
 → core/mantle 
 → single grains vs. aggregates
 → spheres vs. spheroids

◾ Size distribution
 → amin, amax

 → log-normal, power law, MRN, weird ?

Absorption efficiency Qabs(a,l,T?)
Scattering efficiency Qsca(a,l)
Scattering phase function G(a,l)
Heat capacity C(a, T)

non-trivial step



  

Introduction

Calculations of the optical properties
Which model to choose ?

◾ Compact spherical grains
◾ Compact spherical grains with mantles

◾ Porous grains
◾ Composite grains  random distribution→

◾ Aggregates with one-point contact

◾ Aggregates with contact surface area
◾ Grains of any shape
◾ Composite grains  controlled distribution→

◾ Spheroidal grains with or without mantles

Mie: BHMIE
BHCOAT
Bohren & Huffman (1983)
Effective Medium Theory EMT
Maxwell Garnett or Bruggeman
Bohren & Huffman (1983)
T-MATRIX
Mischchenko (2000)
Discrete Dipole Approximation DDA
Draine & Flatau (1994)

DDA, T-MATRIX
Analytic function in the Rayleigh limit
Geometric limit in the UV
Bohren & Huffman (1983)



  

Optical constants

Uncertainties in the optical constants
 → translation in the Qabs

Let’s assume that both n & k varies by +10 % or -10 %
a = 0.1 μm



  

Optical constants

Uncertainties in the optical constants
 → translation in the SED

Let’s assume that both n & k varies by +10 % or -10 %
 → silicates with a log-normal size distribution

 → 10 % at long wavelength
 → more around the peak of the SED due to ≠ temperatures



  

Grain shape

Structure of the grain
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Grain shape

Description of the grain surface
 → completely smooth vs. irregular

 → single grains : increase by ~ 5 % for highly irregular surface
 → aggregates : increase by ~ 20 % for large contact area

~ 7 %



  

Choice of the calculation method

Calculations of the optical properties

◾ Aggregates of 8 monomers
◾ monomer  0.1 and 1 → μm compact 
sphere 

◾ Three types of calculations
◾ DDA  « exact »→
◾ Mie for a sphere of equivalent mass
◾ EMT+Mie with a = Rg and Pequivalent

◾ Significant differences
◾  → different grain temperatures
◾  → shifted SEDs
◾  → mid-IR silicate features ≠ size estimates 



First Session Wrap-Up: What Can We Be Certain About?

Should we advocate that the ability to precisely estimate the
uncertainties must be taken into account in the design of new
experiments & new telescopes?

Can we use the scatter resulting from comparing different models as a
way to quantify the absolute uncertainty on our hypotheses?

Could machines learn estimating uncertainties?

F. Galliano, K. Demyk & P. Gratier PCMI – Uncertainty workshop



Second Session:
Propagating Uncertainties Through Data Processing & Modeling



Techniques to Propagate Uncertainties Through Data Processing

Frédéric GALLIANO

Lara PANTONI & Dangning HU

AIM, CEA/Saclay, France



Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization
Given a collection of multi-λ images ⇒ propagate the original uncertainties through:

1 Complex background subtraction ⇒ stars, cirrus, CIB, etc.;
2 Degradation to a common resolution ⇒ kernel convolution;
3 Reprojection on a common grid ⇒ resampling.

Spectral analysis
Spectral cube analysis ⇒ propagate the original uncertainties through:

1 Degradation to a common resolution ⇒ kernel convolution;
2 Reprojection on a common grid ⇒ resampling;
3 Line fitting ⇒ flux extraction.

Consequences
These steps are necessary before modeling ⇒ they change:

noise level;
its distribution;
its correlation.

F. Galliano (AIM) PCMI – Uncertainty workshop 2 / 7
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Methods to Propagate Uncertainties

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

PRO: Quick to run;
Elegant.

CON: Requires some approximations: normal noise, Gaussian kernels, etc.;
Can become excessively complex ⇒ can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

PRO: Easy to implement;
Can account for any effect;
Accounts for the complexity of the noise: non-gaussianity, correlations, etc.

CON: Can be long to run (' 100× the processing time);
Not completely rigorous (not centered).

Bayesian Modeling

PRO: The most rigorous method.
CON: Requires a parametric model of the source morphology.
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M 99 Noise Propagation: Pixel Statistics

(Pantoni et al., in prep.)

Independent (ρ = 0): σ =
√

σ2
a + σ2

b + 2ρσaσb =
√

σ2
a + σ2

b .

Correlated (ρ = 1): σ =
√

σ2
a + σ2

b + 2ρσaσb = σa + σb .

⇒ can feed these errors to a Bayesian SED model.
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Take-Away

Several applications require heavily processing original data before
modeling.

Can account for any processing step and observing bias.

Bootstrapping is a very efficient & easy-to-implement method:
1 Add random perturbations to the original data;
2 Loop over the whole processing;
3 Compress the distribution only at the end.

⇒ get a full uncertainty distribution w/ its correlations.
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A single set of parameters to describe the 
ISM properties:

- photoionization models

but also:
- photodissociation models
- shock model
- dense gas models
- dust models
- …

From single-component models…

parameters
-density
-ionization 
parameters
- stellar 
properties
-metallicity
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but also:
- photodissociation models
- shock model
- dense gas models
- dust models
- …

From single-component models…

parameters
-density
-ionization 
parameters
- stellar 
properties
-metallicity

Increase the complexity by linearly combining 
several components under different 
configurations:

e.g.,
● multisector models

(combining several 
sets of gas parameters)

● multicluster models
(combining several 
sets of stellar parameters)

● distributions 
of parameters

To "topological" models…

1/7

(e.g., Lebouteiller+17, Cormier+19, Polles+19, 
Ramambason+22, Richardson+14,+16)

Topological models



NGC1705, Zastrow et al. 2013

Integrated lines fluxes
Cormier et. al (2015) 

Predicted lines fluxes

How do we compare 
models to observations ?

OBSERVED LINE FLUXES

Comparing models and observations
PREDICTED LINE FLUXES
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NGC1705, Zastrow et al. 2013

Integrated lines fluxes
Cormier et. al (2015) 

Predicted lines fluxes

How do we compare 
models to observations ?

Need for a statistical framework

OBSERVED LINE FLUXES

Comparing models and observations

accounts for upper limits

accounts for priors

accounts for systematic uncertainties

PREDICTED LINE FLUXES

asymmetric uncertainties
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MULTIGRIS: a Bayesian tool to automate multicomponent modeling 

Hao2

Lebouteiller & Ramambason, 2022
GitLab: https://gitlab.com/multigris/mgris

● model M= grid of predicted 
fluxes + interpolation function 

● Topological configuration 
(number of sectors and 
parameters 𝜃 and priors P(𝜃))

● data d = observed emission 
lines + upper limits

→ SAMPLING: draw from the 
likelihood with a given sampling 
algorithm (MCMC)

Use Bayes theorem: P(𝜃|d) ∝ P(d|𝜃)P(𝜃) 
⇒ posterior 
Probability 
Distribution Functions 
(PDF)  
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● Topological configuration 
(number of sectors and 
parameters 𝜃 and priors P(𝜃))

● data d = observed emission 
lines + upper limits

→ SAMPLING: draw from the 
likelihood with a given sampling 
algorithm (MCMC)

Use Bayes theorem: P(𝜃|d) ∝ P(d|𝜃)P(𝜃) 
⇒ posterior 
Probability 
Distribution Functions 
(PDF)  

/21
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Uncertainties associated with the choice of the best configuration

Different topological 
representations:

1 sector

2 sectors

3 sectors

★ Which topological model is favored by the knowledge from a 
given set of lines? 
⇒ Minimal level of model complexity 

M1

M2

M3

Need a metric to compare models! 

MARGINAL LIKELIHOOD

PRIOR PROBABILITY
OF THE MODEL

4/7



Uncertainties associated with the sampling (MCMC)

/21

Challenges with MCMC walkers:

★ known caveats of random walkers: 
- can get stuck in local maxima ⇒ not well adapted to 

sample multi-peaked distributions
- stochasticity ⇒ solution may vary with different 

starting points

★ Do not sample the whole parameter space
⇒ the marginal likelihood is difficult to evaluate!

integrate on the whole 
parameter space

likelihood prior on θ

MARGINAL LIKELIHOOD
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Uncertainties associated with the sampling (MCMC)

/21

Particle filtering methods:

★ parallel MCMC chains that simultaneously sample the whole 
parameter space

★ less sensitive to starting values but requires large number of 
draw

★ marginal likelihood is easier to evaluate!
⇒ allows model comparison assuming that prior probabilities 
are equal

integrate on the whole 
parameter space

likelihood prior on θ

MARGINAL LIKELIHOOD
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Key points and some questions

/21

★ Topological models add a layer of 
uncertainties with the choice of the best 
configuration

#1; Is it ok to assume that all models are 
a priori equivalent ?
Should more complex models be favored as more likely to 
reproduce a complex ISM structure? (and how?)

assuming that the 
prior probabilities of 
all models are equal
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Key points and some questions

/21

★ Topological models add a layer of 
uncertainties with the choice of the best 
configuration

★ Particle filtering sampling methods are well 
adapted to sample multi-peaked distributions 
and evaluate easily the marginal likelihood.

★ The posterior distribution reflects the 
knowledge associated with a given set of 
lines and their associated (measured) 
uncertainties assumed to be gaussian.

#1; Is it ok to assume that all models are 
a priori equivalent ?
Should more complex models be favored as more likely to 
reproduce a complex ISM structure? (and how?)

#2: How should we representent 
multi-peaked distributions in which the 
mean, median are not representative?
Smooth representations may be limited to interpret trends 
in samples, especially for incomplete samples

#3: What is the impact of the set of 
tracers used as input?
In theory better to have as many as possible but require 
more complex models. Tracers not well understood may 
bias the solution.

#4: What is the impact assuming fixed 
gaussian uncertainties for the input data?
Ideally, the fitting process should be included on-the-fly 
with a new fit at each draw in the MCMC (expensive)

assuming that the 
prior probabilities of 
all models are equal

7/7
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Example: Representing the individual and global PDFs

Figures from Ramambason+22
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Example: Representing the uncertainty on topology

Figures from Ramambason+22
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Example: Representing the uncertainty on topology
Choice #1: representing only the “best” models Choice 2#: representing only the “best” models

Figures from Ramambason+22



Dust/CIB components separation
Uncertainties in the components separation

Evaluating uncertainties for components
separation

Erwan Allys - LPENS, Paris,
with C. Auclair, F. Boulanger, P. Richard

Colloque PCMI 2022
Paris, October 26th 2022

1 Erwan Allys Evaluating uncertainties for components separation from observational data



Dust/CIB components separation
Uncertainties in the components separation

Dust/CIB components separation
Application to Herschel data

Outline

1 Dust/CIB components separation

2 Uncertainties in the components separation
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Dust/CIB components separation
Uncertainties in the components separation

Dust/CIB components separation
Application to Herschel data

Dust/CIB components separation

• Herschel spider field at 250µm
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→ Thermal dust emission and Cosmic Infrared Background (CIB)
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Dust/CIB components separation
Uncertainties in the components separation

Dust/CIB components separation
Application to Herschel data

Dust/CIB components separation

• Scientific objective

I Mixture of components in observations
→ d = s+ k with d data, s dust, k CIB

I Use non-Gaussian information to separate them
→ close SED of thermal dust and CIB
→ Work at a single frequency (to begin with)

I Realistic simulations hard to find
⇒ Work only from observational data

→ From observational statistics of k, recover statistics of s

Auclair et al, in prep.
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Dust/CIB components separation
Uncertainties in the components separation

Dust/CIB components separation
Application to Herschel data

Components separation algorithm

• Application on Herschel spider field

I Clean k0 CIB observation from Lockman hole field
→ estimation of the statistics of k

I Deformation of d to an estimate s̃ of s (Regaldo+ 2021, Delouis+ 2022)

→ gradient descent in pixel space
→ several constraints from scattering statistics
→ happy to discuss more :)

I We obtain a s̃ map, on which we evaluate the statistics

→ Focus on statistics of s (not deterministic at small scales)
→ Only d and k0 are used in the process !

5 Erwan Allys Evaluating uncertainties for components separation from observational data



Dust/CIB components separation
Uncertainties in the components separation

Dust/CIB components separation
Application to Herschel data

• Input data and separated components
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→ Look nice, but what are the uncertainties ?
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Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Outline

1 Dust/CIB components separation

2 Uncertainties in the components separation
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Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Evaluating uncertainties

• Difficulties for evaluating uncertainties...

I Only a few input maps
I Highly non-linear separation

→ First approach with a validation on mock data

8 Erwan Allys Evaluating uncertainties for components separation from observational data



Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Validation pipeline on mock data

• Constructing a set of mock data

I Perform a separation with known dust
I Surrogate dust from observations

→ same field of view, gas from HI data
→ avoid CIB contamination
→ denoising and map construction with ROHSA (Marchal+ 2019)

→ lower resolution ⇒ smaller patch
I CIB from Lockman Hole can be cut in several patches

9 Erwan Allys Evaluating uncertainties for components separation from observational data



Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Validation pipeline on mock data

• Different types of errors

I Same statistics for k and k0
→ algorithm error

I Statistical variance for k and k0
→ model error

→ Model error dominates on all scales

10 Erwan Allys Evaluating uncertainties for components separation from observational data



Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Results from mock data

• Power spectrum

10−1 100

k [arcmin−1]

102

103

104

105

106

107
P

ow
er

sp
ec

tr
a

[J
y

2
/s
r]

dm
sm
km
s̃m

k̃m
em

→ 1σ-variability + bias w.r.t. truth available.
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Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Results from mock data

• Beyond power spectrum (increments pdf, pixels pdf, RWST)

→ Correct statistics reproduced on all but smallest scales
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Dust/CIB components separation
Uncertainties in the components separation

Validation on mock data pipeline
Results from mock data

Estimating uncertainties with real data

• Uncertainties: mock data are not real data...

I We have only one sample of the CIB
→ no direct variance assessment

I Mock data are with smaller patches
→ how to extrapolate to larger patches ?

I The HI map is not a dust map
→ how to extrapolate to an unknown component ?

• We can extrapolate from the application on mock data
→ What’s the better way to do so ?

• What other method could we use ?

Thanks for your attention !
– and happy to discuss components separation :) –
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Second Session Wrap-Up: What Can We Be Certain About?

Should we try to account for every effects, from the instrumental biases
to the physics of our target, as well as the different contaminations, in
one big single model?

What is the meaning and potential usefulness of a good fit with a wrong
model?

How to validate a simulation that can not be fit to some observations?

Have we been too pessimistic? Isn’t there something called "the law of
large numbers" that will guarantee that all our uncertainties average out?

F. Galliano, K. Demyk & P. Gratier PCMI – Uncertainty workshop



Third Session:
How to Publish Uncertainties & Allow Future Studies to Use

Them Consistently



• Show approximations of the distributions (histograms, kde)

Most of the time we have access to a sample of points
Plotting distributions

1



• More difficult with increasing dimensions: corner (or triangle) 
plots

Most of the time we have access to a sample of points
Plotting distributions

2



Summarising the whole distribution with a “central value” and an  
“uncertainty” often called point estimates


• mean ± standard deviation


• median ± interpercentile range (often p16 and p84 to match the  
1 sigma interval for a 1d gaussian distribution)


• For higher dimensions the uncertainty can be summarised in a 
covariance matrix (d x d but only need to store d(d-1)/2 values)

Most of the time we have access to a sample of points
Quoting errors
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Most of the time we have access to a sample of points
Plotting errors
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• “Black box” optimisers 


• If they give uncertainties usually computed from local curvature 
around “maximum likelihood” or “minimum chi2” and assume 
gaussian errors => covariance matrix.


• If no uncertainty given you can try bootstrapping 


• 1/ create many (104-5) new datasets by resampling with 
replacement


• 2/ compute the value you want for each of these resampled 
dataset


• 3/ you now have a sample of values you can deal with as in the 
previous slides

Sometimes we don’t have a sample of points
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• send the samples themselves


• choose a family of analytic distributions, compute the associated 
parameters and send those


• send the parametric description (histogram or kde)


• send the “point estimates” (possibly with the covariance matrix)


• for bayesian inference: send the dataset + likelihood function + 
prior definitions and let the others resample as many points as 
they want

What to send ?
Transmitting this information
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• A table in your manuscript


• An ASCII table


• A structured format json, pandas, python pickle (beware of 
strange formats they don’t live forever)


• for larger datasets: binary formats (hdf5, netCDF, fits, etc)


• Some formats are trying to become standards eg arviz 
InferenceData structure for samples from a distribution


• Maybe one day: the python scripts that create the figures, tables 
of your manuscript from the data. Some editors already ask for 
the datasets

How to send it ?
Transmitting this information
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Third Session Wrap-Up: What Can We Be Certain About?

Would it be profitable to the community to set a standard in the way
uncertainties are estimated and published?

Should we create a network of people interested in helping each other to
achieve this task?

Who should centralize the uncertainties of all published studies (A&A,
the CDS, etc.)?

Should we declare October 26 ± 1 “Uncertainty Day” at UNESCO?

F. Galliano, K. Demyk & P. Gratier PCMI – Uncertainty workshop


