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Why are uncertainties

so instrumental?
A philosopher’s viewpoint

Marie Gueguen, Marie Stodowska Curie fellow
Institut de Physique de Rennes 1
PCMI, 26 Octobre 2022




Astrochemistry

* Astrochemistry is a young interdisciplinary field, that

started with the detection of CH, CH™, CN in the
1940’s

(McKellar, PASP, 52, 187 ,1940; Adams, Astrophysics J.,93,11,1941; Douglas
& Herzberg ,93, 11,1941, Douglas & Herzberg 94, 381, 94, 381, 1941)
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 What characterizes young IDF:

 Rapid collection of observational data that
requires interpretation

 Theoretical and experimental progresses
not always able to keep up with this rapid
pace

=> Non-predictive models.
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What is a model?
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* Minimal modelling principle
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What is a model?

Partial representation
Minimal modelling principle

Construction: Iidealizations, approximations
and simplifications

Computational model: high epistemic opacity
(= not an easy task to contribute which input
data contribute the most to the model’s
output)
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Model development in context of
high uncertainties

.
: * 3 ?
.., Observations
d Incomplete
4 R Interpreted on the
. o o basis of uncertain data
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high uncertainties

Model
Partial representation
Idealizations (chemical
nhetworks, type of chemistry,

astrophysical conditions, etc..) R
Uncertainties in the input
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Model development in context of

Observations
Incomplete
Interpreted on uncertain
data
Inherent uncertainties
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Astrochemistry

 Non-predictive models:

* Uncertainties higher on the theoretical side
than on the observational side

 (Dis)agreement with observations not
iInterpretable
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 Non-predictive models:

 But: identifying and reducing uncertainties Is
not only the path to predictivity, but it is also
the only tool you have to break the epistemic
opacity of your model and get a better
understanding of what your model is sensitive
to!

* |t also allows you to target where experimental
and theoretical progresses are the most
needed.




- But which uncertainties for
- Which task?

Ry, AUy = y
. ean AN

e Parametric uncertainties
e Model uncertainties

e Unknown unknowns
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Example 1: Ab initio calculations
& rate coefficients

PES

Uncertainties » Dynamical calculations

Approximations

Born-Oppenheimer ?
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Example 2: Low-T reaction rate
constants

Parametric

Extrapolation

Uncertainties -

Model

Unknown unknowns

Missing chemistry? Missing physics?




Example 1: Low-T reaction rate constants

 Uncertainty Propagation: each reaction rate constant kl- / all parameters are

randomly perturbed a large number of times according to a pre-definite
probability distribution

* Sensitivity analysis (Saltelli, 2020): study of how uncertainty in the output of a
model (humerical or otherwise) can be apportioned to different sources of
uncertainty in the model input

* identify correlations between inputs and outputs



RCS()IU“O" lC\'CIS n]()dcl Struclurcs Salte”i et al., 201 9, En‘/. MOd.
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model

data output

feedbacks on input data and model factors

Uncertainties coming from heterogenous sources are propagated in the model
Generates an empirical distribution of the output of interest

UC in the output decomposed according to source



Saltelli et al., 2019, Env. Mod.
&Softw 114
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Fig. 4. Density and number of sensitivity analysis articles returned by search
criteria, by subject.
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Loison, Hickson, Hebrard and Dobrijevic, 2014 MethOdOlogy

The methodology we use to improve our knowledge of the photochemistry of Titan’s a nosphere is
following: o

Methodology for the improvement of photochemical models

Improve data analysis
Suggest new detections Task 1 Suggest new studies
Uncertainty propagation studies
-~ -+
New constraints Global sensitivity analysis Improve the model

| J

New experiments
and

A theoretical studies

Y Uncertainties on model output
Observations Determination of key reactions

Spatial and seasonal
distributions
New detections

A

)’ . " v". . , . ]
[dentify critical Reduce missing
pounds (low temperature)
\J A
Suggest new

e Task 2 Improve the scheme
detections

Completeness of chemical scheme -

Extensive bibliographical review
Suggest new compounds First-order theoretical studies
and chemistries

Suggest new studies

Figure 1. Methodology based on two tasks to improve the
efficient basis for new studies focused on selected reactig
models. Improvement of models favour new detection a




Conclusion

- Why are uncertainties instrumental? Because exploiting uncertainties
helps to better understand a model that would otherwise remain a
black box - especially what the model is sensitive too

- Jarget theoretical and experimental progresses
thanks to uncertainty propagation methods and
sensitivity analysis.

and what is negligible

 Optimization of your model in terms of
computational cost.

* Forcing a non-predictive model to match observations bu tuning
parameters not empirically constrained amounts to increasing its
epistemic opacity and to loose your two main sources of information!

-  UQ methods and sensitivity analysis: important interdisciplinary
facilitators both In terms of uncertainty communication and of
targetting where experimental and theoretical progresses will pay off
the most. (Saltelli, 2020,
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Conclusion

- Why are uncertainties instrumental? Because exploiting uncertainties
helps to better understand a model that would otherwise remain a
black box - especially what the model is sensitive too

- Jarget theoretical and experimental progresses
thanks to uncertainty propagation methods and
sensitivity analysis.

and what is negligible

 Optimization of your model in terms of
computational cost.

* Forcing a non-predictive model to match observations bu tuning
parameters not empirically constrained amounts to increasing its
epistemic opacity and to loose your two main sources of information!

-  UQ methods and sensitivity analysis: important interdisciplinary
facilitators both In terms of uncertainty communication and of
targetting where experimental and theoretical progresses will pay off
the most. (Saltelli, 2020,
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First Session:
Quantifying Experimental & Observational Uncertainties



Overview of the challenges of
estimating experimental
uncertainties

Karine Demyk

K. Demyk, PCMI, workshop « Uncertainties », October, 2022



How do we / should we do?

list all sources of uncertainties and errors

calibrate the experiments

estimate the uncertainties/errors coming from

* measurements

e data reduction

» data modelling / fitting needed to extract the studied quantity
explain all choices made, keep track of all steps

not always easy to quantify!

highly dependent on the experiment



Example 1: measurement of opacities (MAC)

 From spectroscopic measurements on a population of grains embedded in a

matrix

T = transmittance

S
MAC = — — X In(T) S = sample surface

m m = sample mass

e spectrometer stabllity
AMAC = — x%

* uncertainty on the sample mass

om
AMAC,, = MAC(A) X —
m

MAC (cm’/g)

1000.0
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1.0

0.1

Mg2SiO4

10K
100 K
200 K
300 K

l | LA

10

A (um)
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Example 1: calculation of optical constants

A number of assumptions have to be made:
= To relate the MAC to (n,k) :

e grain size
e grain shape

= To calculate (n,k) knowing the MAC
e value of the refractive index in the visible
= Effect of a possible agglomeration in the pellet ?

DN /dloz(Dp)

IQ.B —
43-6 —
04

n.2F

nnnnnnnnnnnnnnnnnnn

0.0




Example 1: estimation of the error on the optical constants

Error on Nyis : Error on grain shape : Error on grains size (Rayleigh
*Nvis varies by + 5% . prolate vs oblate limit assumption):

*a/b varies by + 40% DDA calculations

I e » prolate grains

| 5 % § 0.04p /> = 1 : -measured size distribution

e s 0.02f 0 _ »Mg2SiOys silicate from Jager+2003

0.10[ "7

0-00¢ PRSI —
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— Lo -
~0.02F 0.8} :
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Sk(shape)

0.00F =~ .
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0.00 F—==—-<
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dk(size)
|

_0‘05; ~0.05F

—0.10 ...,

/

—0.10 L.,

10 100 1000
5 A(um)

[Demyk+2022] K. Demyk, PCMI, October, 2022



Example 1 : Error estimation on Mg-rich silicate optical constants:

Quadratic sum of the errors = total uncertainty on n and k

on, .~ 4 -6% , dominated by uncertainty on nvis
ok, . A <30 pm: ~5% (up to ~13% in the silicate feature , dominated by grain size uncertainty
A > 30 um: 5 to 25 % depending on sample, dominated by grain shape

3.5 TTTTT] T T T T T T 111 1-00:""'| - IR
| X35 — B _|
| _ | X35 _

30— 10K \__ i |
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[ 200K - - i
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K. Demyk, PCMI, October, 2022



Example 2 : determination of anahormanicity factor

 From spectroscopic measurements on a population of grains embedded

IN a matrix at varying temperature: 13 - 723 K
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This work

Gas phae (Joblin et al. 1995)
Ne matrix (Joblin et al. 1994)
p-H,, matrix (Bahou et al. 2013)
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\\'\-\.
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e baseline subtraction

e peak position
determination

* fit the Apeak - T relation



Example 2: determination of anahormanicity factor

e data reduction:

].2 lllllllll | lllllllll | lllllllll | lllll

 Impact of the baseline _
determination - 13 K

e




Example 2: determination of anahormanicity factor

» data modelling: method to determine the

band position and width
e peak maximum

* area-weighed peak maximum

e spectral decomposition with
gaussians, lorentzians

0.6

0.4
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wavenumber (cm

Example 2: determination of anahormanicity factor
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UNCERTAINTIES IN
ICE LABORATORY EXPERIMENTS
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Marco Minissale
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Reaction rates
Thermal and non-

What we thermal desorption
measure? rates

Diffusion constants

*

* Non-exhaustive list




Aix:-Marseille
universite

Ingredients:
what we need?

Flux of atom/molecule
Sample temperature
Flux of particles
(photons, electrons,
ions, ...)

*

26/10/2022

Calibration and
systematic errors

How we
measure”?

Thermocouples
Mass and Infrared
spectroscopy

Instrumental errors
(i.e. Accuracy and
sensitivity)

What we
measure?

* Non-exhaustive list

Reaction rates
Thermal and non-
thermal desorption
rates

Diffusion constants

*

Model uncertainty —
Which parameters and
physical-chemical
processes?
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Calibration and =
systematic errors [B=
Quadrupole mass ay t
spectrometer (QMS) Q
o
/// :
4 He Cryostat -
Z Tun =8K —
\|;! ﬁ ‘‘‘‘‘‘‘ E
UHV chamber —~ c
P~10" mbar I ) o o e o
— - _‘U' NI - -
A =] : 0 g
N Sample holder P, A C Al U Q
< / O % | Q.
| Triply dlfferent|ally ‘ ’ - |.|>j
~ pumped. bearfnjrjes”ij( . ,
/\—\\\ / OAP I FT- IR e
Beamlin92</w (O} h
N /) u Model uncertainty —
, ——l )
gearmine 1 Which parameters and
S physical-chemical

processes?

FORMOLISM setup, CY Cergy-Paris University
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Two examples:

-Diffusion/desorption of oxygen atoms on cold
surfaces

- Reaction on solid-phase: H,CO+0O
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TP-DED: Temperature Programmed —During

26/10/2022

Exposure Desorption
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1.6

Both O and O,
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1.6
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Modeling diffusion/desorption kinetics

Experimental
e parameter

Desorption /
- dX

- = ¢x — Xkx—des — R(X, kx—dif)
Flux Desorption Reaction
rate rate

"l

Diffusion

W

Fitting TP-DED experiments, we can find the
couple Egig-Eges
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Modeling diffusion/desorption kinetics

2000 T T T T y T T T T T T T T T T T
b g LT Eif/ Edes
1600 -

& 1400 1 O on ASW T

> ] SPre G

D 1200 - - .

e ]

© 10004 N on ASW T

S ]

E

!"D:

800 -

] 1 Edif vs. Edes obtained for O and
e TN atoms. Open symbols
200109 .- 4 O on graphite ] represent previous estimations of

-300-7;, { Edes for O atoms
200 4~ :

| ! | ! | ! | ! I ! | ! | ! |
400 600 800 1000 1200 1400 1600 1800 2000
Desorption energy (K)

Which ratio is the most appropriate?
We need input from other experiments to evaluate the ratio

From Minissale, Congiu & Dulieu MNRAS 2016
O R
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H,CO+0 reaction in solid-phase

/ CO,+H,

In gas phase H2C0+O\
H,O+CO

Chang & Barker (1979)
Wellman et al.(1991)

Activation barrier= 1560 K
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H,CO+0 reaction in solid-phase

/ CO,+H,

In gas phase HZCO+O\
H,O+CO

Chang & Barker (1979)
Wellman et al.(1991)

Activation barrier= 1560 K

- The O atoms are mixed with
O, molecules.

The presence of oxygen atoms
makes harder the estimation of
activation barrier in solid-phase

- O atoms diffuse quite fast on
- surface

- O atoms can react each
other
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H,CO+0 reaction in solid-phase
0035 ——7——7+——F+—+— 0 — 0.035
] ——HCOo ]
00301 Mass 44 —H:CO+O Mass 30 H0.030
g HzCO ] 0.025
2 _
40.020
Temperature programmed 3 .
> 1
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|_ 4
40.005
: : : | : : : : - 0.000
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3.o-~/\,-/‘ W _ “ } © 1503 cm’ (H,CO)
’\2_5 _/*AI\/\"'"— W-\—MVVVVM g 18] [ |
“me 0t I | Infrared spectoscopy
c - | E 9 ' I 4
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Minissale et al., A&A 2015
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H,CO+0 reaction in solid-phase
O’ (1) = 27 oo (1 = 20 — O2) — (1 = 7) ¢o,0t O O'(t) = =4 koditt O O — kodift O O2
— 1aER27¢0,0f H2CO — O rpeso, — raLH kodif OH2CO — O rpeso,,
O05(1) = (1 = 7) po,oft (1 — O (1 — €)) — 27 0,0t O2 O5(7) = 2 kodir O O € — kodift O Oz
+27(1 =€) 90,0 O — Oy I'Desoo, —0Oyr Desoo,
04(t) = (1 = T) po,0it O + 27 do,off O2 O5(7) = kodift O O2
HyCO'(f) = —ragr 27 ¢o,0f H2CO HyCO' (1) = —raLn koair O H2CO
CO&(I) = IaER 2T D0, 0ff H,CO. COé(t) = raLH koaif O H,CO,
FAER = e_% where
& : - Langmuir-
FDesog = Ve T Eley-Rideal kodgit = ve T Hinshelwood
“Eoydes =Eg
IDesog, = V€ £, Faqg=¢7
Source of uncertainty: fluxes of O and
O, (¢), H,CO initial coverage, chemical » Activation energy
desorption (¢), desorption parameters Simulation of
(v, Eqes), diffusion constant (Eg ) experimental
results
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H,CO+0 reaction in solid-phase

« Two coupled parameters: H,CO+O barrier and O diffusion
« The pure thermal O diffusion estimated to be between

900 and 600 K

O irradiation (ML)

— T T T—"1 T T T 1T T T T T T T T T 1
= 2044 \ A_ —— Experimental data -
= ™ e e A Model d
® & o P el
@ 3 =l OO % I e % i
E 101 y 1B N e
3 ) —J]_ Hco , % e ;&9 """""" o e
©  0.5- , A 57 e e I 1
5 s L ke R T ik g
8 £l /,,’» G~ R " A L ”g;’)""’ _
£ 001 o Ea=280 K/kb " 1~ E=390K/k |
1 b 1 s 1 ./ 1 S 1 1 4 1 ' 1 I b 1 s 1 J 1 1 > 1 = 1 ' 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 00 0.5 1.0 1:5 2.0 2.5 3.0 35

If O diffusion 750 K,
H,CO+O barrier=335 K

Minissale et al., A&A 2015

O irradiation (ML)

Exp uncertainty ~ 10%

“Model”

uncertainty ~ 30%

1.0

0.5

0.0

Integrated IR area (ML)
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Diffusion: oxygen atoms

| ! | ! | ! | ! | -]
. @ O+ i
10 ® HCO+O0 3
---- Arrhenius law (750 K) ]
— 10™ Tunneling+Arrhenius law
‘0
E -1 —_
o 10 Transition
5
% 10" :-:“i'::“g " Thermal hopping
S 9 S/ regime
/
s 10" J/
& y
/
'uoE 10™
107"

Minissale et al., PRL 2013 Surface temperature (K)
Minissale et al., A&A 2015

26/10/2022

Thermal hopping

6 K
Quantum tunnelling

0.7 A

I 500K

2.7A

B S —

O atoms start
to desorb




Aix:-Marseille
universite

Ingredients:
what we need?

Experimental and
systematic errors

How we
measure”?

Instrumental errors

What we
measure?

* Non-exhaustive list

Model uncertainty —
which physical-chemical
processes?

26/10/2022

Experimental uncertainty
can be “easily” taken
into account and
estimated or reduced

Often the main source of
uncertainty comes from
coupled parameters /
coupled processes




universiteé

Aix:+Marseille HY PCMI - Paris
26/10/2022

Desorption induced
by chemistry

e

Particlés

from the Q2
DED beams

(During Exposure Desorption) ] Before ng | After
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O, ices exposed to D atoms

I 1l
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Thank you for your attention
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Signal extraction from noisy line cubes
The problem of applying hyperspectral imaging methods

Lucas Einig




Integral

Spectrum

Lucas Einig

ORION-B dataset

1300 (1-0) line

C'70 (1-0)

—2 0 0 1 w

Signal extraction from noisy line cubes
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Low rank asumption based methods

Intensities Reconstructed intensities
1

Hidden layer Hidden layer

~ @ Bottleneck

(GQQAQOOOOOL0 -

v
Encoder f Decoder g

f,g=argmin|[I-g(@)F st © =f(I)and dim© < dimI
f’g

Lucas Einig Signal extraction from noisy line cubes



Redundancy between channels

Hyperspec. data Indian Pines 13CO (1-0) line
e, Ty A 2] 72 i b = i
m’a ‘!j! ?r’:\‘

oo

Example channel 2 Example channel 1

Lucas Einig Signal extraction from noisy line cubes



Intrinsic dimension estimation

We propose to estimate the intrinsic dimension of a dataset using
the well known “elbow method” in a non-linear framework.

Indian pines (dim ~ 4) 8CO (1-0) (dim > 25)
1F 1 1 1
j = =
i) k<]
T 08 4 T 08 4
o 0.6 R s 0.6 R
2 E]
3 04f 1 2 04f :
< <
c =
S 02 R $ 021 R
= =
or 4 0 4
Il Il Il Il Il Il Il Il Il Il Il
0 5 10 15 20 0 5 10 15 20 25
Bottleneck size Bottleneck size

Figure: Mean absolute deviation between input and reconstructed data.

Lucas Einig Signal extraction from noisy line cubes



Limitations of low rank methods

m The methods based on a low rank assumption are very
suitable for continuum cubes but more limited for line cubes.

m The higher the intrinsic dimension, the lower the redundancy
and the more complex the signal extraction.

Concerned methods

These conclusions apply to any method based on a low rank
assumption, including

m Principal Component Analysis (PCA).
m Autoencoder neural network (AE).
m Low rank tensor decomposition.

Lucas Einig Signal extraction from noisy line cubes



Improved neural network for molecular line cubes

Developed solutions

m Adapt the network architecture to the data
m Use prior knowledge

Figure: Example of noisy and denoised data with the Local autoencoder
with prior knowledge.

Lucas Einig Signal extraction from noisy line cubes



(A very small part of the)
Uncertainties in the ISM grain models

N. Ysard (IAS, Orsay)

Mukai et al. (1992)
Koehler et al. (20711, 2012)
Min et al. (2016)

Ysard et al. (2018)



= Chemical composition N
- m =n + ik : from the lab ? Empirical ?
— composite grains ?
— inclusions, ice mantle ?

m Structure >
— COmMpAct vs. porous
— core/mantle
— single grains vs. aggregates
— spheres vs. spheroids _J

non-trivial step

Basics of all dust models

Introduction

Absorption efficiency Qans(a,A,T?)
Scattering efficiency Qsc(a,A)
Scattering phase function G(a,A)
Heat capacity C(a, T)

A

= Size distribution
- Omin, C]mox

- log-normal, power law, MRN, weird ?

——



= Compact spherical grains
Compact spherical grains with mantles

= Porous grains
Composite grains = random distribution

= Aggregates with contact surface area
Grains of any shape
Composite grains = controlled distribution

= Spheroidal grains with or without mantles

Intr6d u_cti<=>n

Calculations of the optical properties
Which model to choose ?

Mie: BHMIE
BHCOAT
Bohren & Huffman (1983)

Effective Medium Theory EMT
Maxwell Garnett or Bruggeman
Bohren & Huffman (1983)

T-MATRIX
Mischchenko (2000)

Discrete Dipole Approximation DDA
Draine & Flatau (1994)

DDA, T-MATRIX
Analytic function in the Rayleigh limit

Geometric limit in the UV
Bohren & Huffman (1983)




Optical constants

Uncertainties in the optical constants
- translation in the Qqbs

Let’s assume that both n & k varies by +10 % or -10 %

a=01um
7R — n&k +10%
100,-"— :--\‘\‘. 14 —— n&k -10%
1072,
1.2
8
o
107 2
lz:, o
% 4
S 1.0
‘\\
1076 ‘il
{ 0.8
\\
108 ‘\\
\\
A\
\
1071 10° 10% 102 103 104 10° 107! 10° 10! 10? 103 104 10°
Wavelength (um) Wavelength

——



Optical constants

Uncertainties in the optical constants
= translation in the SED

Let’s assume that both n & k varies by +10 % or -10 %
- silicates with a log-normal size distribution

—— silicates only 12] — n&k -10%

—— all dust populations — n&k +10%
10-24; 1.1
1.0
[}
—_ [AN)
% 2 0.9
wn ! o} 7]
‘@ 10723 =
L S
o 5 08
g C
/ 0.7
10—26,
0.6
0.5
107 ‘ :
10? 103 10? 103
Wavelength (um) Wavelength (um)

— 10 % at long wavelength
— more around the peak of the SED due to # temperatures



Structure of the grain

5.0
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4%x107*

3x10°*

2x10°*

Qext

10—4_

6x107°

b~ 7%
+

spheres with a = 100 nm,
2 to 14 nm resolution

—— six 100 nm spheres, 3.7nm apart

aggregates of six 100 nm monomers,
half a radius overlap

- —o

250 300 350 400
Wavelenath (um)

— single grains : increase by ~ 5 % for highly irregular surface
— aggregates : increase by ~ 20 % for large contact area

450

500

Qext / Qext(sphere)

1.6

1.51

=
S}

0.9

0.8

Description of the grain surface
- completely smooth vs. irregular

Grain shape

spheres with a = 100 nm,
2 to 14 nm resolution

—— six 100 nm spheres, 3.7 nm apart

aggregates of six 100 nm monomers,
half a radius overlap

250

300 350 400 450
Wavelenath (um)

500




Qabs

Qsca

Q(DDA)/Q(EMT)
NN W
nw o w o

B
=)

a-Silp., pes

Calculations of the optical properties

DDA, @y = 1 pm

> o EMT + Mie
+ a=ay+ Mie

1y

| DDA, ap = 0.1 pm "=’
o EMT + Mie

+ a=ay+Mie

absorption

- - scattering

101 100 101 102

Wavelength (um)

100 101
Wavelength (um)

102

100 101 102
Wavelength (um)

(T.hoiceff thé_ calculation metho

= Aggregates of 8 monomers
monomer = 0.1 and 1 um compact

sphere

= Three types of calculations

DDA = « exact »

Mie for a sphere of equivalent mass
EMT+Mie with a = Ry and Pequivalent

= Significant differences

— different grain temperatures

- shifted SEDs

— mid-IR silicate features # size estimates

——



First Session Wrap-Up: What Can We Be Certain About?

® Should we advocate that the ability to precisely estimate the
uncertainties must be taken into account in the design of new
experiments & new telescopes?

e Can we use the scatter resulting from comparing different models as a
way to quantify the absolute uncertainty on our hypotheses?

e Could machines learn estimating uncertainties?

F. Galliano, K. Demyk & P. Gratier PCMI - Uncertainty workshop



Second Session:
Propagating Uncertainties Through Data Processing & Modeling



Techniques to Propagate Uncertainties Through Data Processing

Frédéric GALLIANO

Lara PANTONI & Dangning HU

AIM, CEA/Saclay, France



Propagating Uncertainties Through Complex, Non-Linear Operations

F. Galliano (AIM) PCMI — Uncertainty workshop 2/7



Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
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Multi-wavelength image homogenization
Given a collection of multi-\ images = propagate the original uncertainties through:

© Complex background subtraction = stars, cirrus, CIB, etc.;
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Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization
Given a collection of multi-\ images = propagate the original uncertainties through:
© Complex background subtraction = stars, cirrus, CIB, etc.;

# Degradation to a common resolution = kernel convolution;
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Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
© Complex background subtraction = stars, cirrus, CIB, etc.;
# Degradation to a common resolution = kernel convolution;
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Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
& Complex background subtraction = stars, cirrus, CIB, etc.;
® Degradation to a common resolution = kernel convolution;

© Reprojection on a common grid = resampling.

Spectral analysis

Spectral cube analysis = propagate the original uncertainties through:
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Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
© Complex background subtraction = stars, cirrus, CIB, etc.;
® Degradation to a common resolution = kernel convolution;

© Reprojection on a common grid = resampling.
Spectral analysis

Spectral cube analysis = propagate the original uncertainties through:

© Degradation to a common resolution = kernel convolution;

F. Galliano (AIM) PCMI - Uncertainty workshop



Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
© Complex background subtraction = stars, cirrus, CIB, etc.;
® Degradation to a common resolution = kernel convolution;

© Reprojection on a common grid = resampling.

Spectral analysis
Spectral cube analysis = propagate the original uncertainties through:
© Degradation to a common resolution = kernel convolution;

® Reprojection on a common grid = resampling;

F. Galliano (AIM) PCMI - Uncertainty workshop



Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization
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Propagating Uncertainties Through Complex, Non-Linear Operations

Multi-wavelength image homogenization

Given a collection of multi-\ images = propagate the original uncertainties through:
& Complex background subtraction = stars, cirrus, CIB, etc.;
® Degradation to a common resolution = kernel convolution;

© Reprojection on a common grid = resampling.

Spectral analysis

Spectral cube analysis = propagate the original uncertainties through:
& Degradation to a common resolution = kernel convolution;
® Reprojection on a common grid = resampling;

© Line fitting = flux extraction.

Consequences

These steps are necessary before modeling = they change:
® noise level;
e its distribution;

® its correlation.
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M99 - IRAC 8 um (original)
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The Example of Multi-Wavelength Image Homogenization

M99 - IRAC 8 um (original)

Scaled distribution
= o o
> o @

o
)

=5
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The Example of Multi-Wavelength Image Homogenization

M99 - IRAC 8 um (original) M99 - SPIRE 500 pm (original)

;
. s 2k
L

(Pantoni et al., in prep.)
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The Example of Multi-Wavelength Image Homogenization

M99 - IRAC 8 um (convolved) M99 - SPIRE 500 pm (original)
b =
el R F gy - o

o

(Pantoni et al., in prep.)
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The Example of Multi-Wavelength Image Homogenization

M99 - IRAC 8 Uum (resampled) M99 - SPIRE 500 pm (original)
Wig o i
el R F gy - o

o

(Pantoni et al., in prep.)
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Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).
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® Can become excessively complex = can not account for every effect.
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Can be long to run (=~ 100x the processing time);
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Methods to Propagate Uncertainties

Possible to derive analytic expressions (e.g. Klein, 2021).

PRO: ® Quick to run;
e Elegant.
CON: * Requires some approximations: normal noise, Gaussian kernels, etc.;
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Methods to Propagate Uncertainties

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

PRO: ® Quick to run;
e Elegant.

CON: * Requires some approximations: normal noise, Gaussian kernels, etc.;
® Can become excessively complex = can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

PRO: e Easy to implement;
e Can account for any effect;
® Accounts for the complexity of the noise: non-gaussianity, correlations, etc.

CON: e Can be long to run (=~ 100x the processing time);
* Not completely rigorous (not centered).

Bayesian Modeling
PRO: The most rigorous method.

CON: Requires a parametric model of the source morphology.

F. Galliano (AIM) PCMI — Uncertainty workshop 4/7



M 99 Noise Propagation: Pixel Statistics

F. Galliano (AIM) PCMI - Uncertainty workshop

5/7



M 99 Noise Propagation: Pixel Statistics

Scaled distribution
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o
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Noise-to-signal ratio per pixel

(Pantoni et al., in prep.)
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M 99 Noise Propagation: Pixel Statistics
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M 99 Noise Propagation: Pixel Statistics
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M 99 Noise Propagation: Pixel Statistics
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M 99 Noise Propagation: Pixel Statistics
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M 99 Noise Propagation: Pixel Statistics

Original Original
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Independent (p = 0): o = \/ag + 02 + 2poaoy, = \/ag + o2

Correlated (p = 1): 0 = /02 + 02 + 2p0a0, = 02 + 0.

= can feed these errors to a Bayesian SED model.
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Accounting for Observational Biases: Pointing Errors
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M 83 (IRS)

(Hu et al., in prep.)
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Accounting for Observational Biases: Pointing Errors

M83 (ceptral region)
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Accounting for Observational Biases: Pointing Errors

M 83 (IRS)
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Accounting for Observational Biases: Pointing Errors

M 83 (IRS)

(Hu et al., in prep.)
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Accounting for Observational Biases: Pointing Errors

M 83 (IRS)

(Hu et al., in prep.)
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© Add random perturbations to the original data;
@ Loop over the whole processing;
©® Compress the distribution only at the end.
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Take-Away

e Several applications require heavily processing original data before
modeling.

e Can account for any processing step and observing bias.

e Bootstrapping is a very efficient & easy-to-implement method:

© Add random perturbations to the original data;
@ Loop over the whole processing;
©® Compress the distribution only at the end.

= get a full uncertainty distribution w/ its correlations.

F. Galliano (AIM) PCMI - Uncertainty workshop
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Topological models

From single-component models...

A single set of parameters to describe the
ISM properties:

- photoionization models

parameters
-density
-ionization
parameters
- stellar
properties
-metallicity
but also:

- photodissociation models

- shock model

- dense gas models

- dust models

117



Topological models (e.g., Lebouteiller+17, Cormier+19, Polles+19,

Ramambason+22, Richardson+14,+16)

From single-component models... To "topological™ models...
A single set of parameters to describe the Increase the complexity by linearly combining
ISM properties: several components under different
configurations:
- photoionization models
e.g.,
parameters e multisector models
-density (combining several
-ionization sets of gas parameters)
parameters
- stellar
properties e multicluster models
“metallicity (combining several
but also: sets of stellar parameters)
- photodissociation models
- shock model ® distributions
- dense gas models of parameters
- dust models BD — uaunanm
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Comparing models and observations

PREDICTED LINE FLUXES
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Comparing models and observations

PREDICTED LINE FLUXES OBSERVED LINE FLUXES

z Integrated lines fluxes

2 1-A How do we compare 9

3 o- models to observations ? Cormier et. al (2015)
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MULTIGRIS: a Bayesian tool to automate multicomponent modeling

Lebouteiller & Ramambason, 2022 Use Bayes theorem: P(6|d) o P(d|6)P(6)

GitLab: https://gitlab.com/multigris/maris = posterior
Probability
Distribution Functions

(PDF)

4JPYMC3

N
£ = P(dlp) = ]_[ N =0;,0% =U?)

e model M= grid of predicted
fluxes + interpolation function

e Topological configuration
(number of sectors and — SAMPLING: draw from the
parameters & and priors P(6)) likelihood with a given sampling

o algorithm (MCMC)
e data d = observed emission

lines + upper limits

I
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https://gitlab.com/multigris/mgris

Uncertainties associated with the choice of the best configuration

% Which topological model is favored by the knowledge from a

Different topological given set of lines?
representations: = Minimal level of model complexity

Need a metric to compare models!

M2 ( Ripves = p(Mllé)
2 sectors { y B( A/(2| 0)

s Rbayei}/ P(glMl)p(Ml)
3 sectors | X p(OIMa)p(M>)

MARGINAL LIKELIHOOD
4/7



Uncertainties associated with the sampling (MCMC)

Challenges with MCMC walkers:
No-U Turns random walker

%  known caveats of random walkers: s e

4.0
- can get stuck in local maxima = not well adapted to
sample multi-peaked distributions O T
- stochasticity = solution may vary with different 1o 3 -g}éﬁf%
. . . e
starting points ¥ 'QE s
% Do not sample the whole parameter space
= the marginal likelihood is difficult to evaluate! < 207
MARGINAL LIKELIHOOD .;ﬂ“!r}gé
kg 1-:2:’(;& X
— — — i ’
p(OIM) = | p(Ol6, M)p( 6| M)db —
0

0.0 T T
k/‘\/ V‘\/ 4.0 3.0 2.0 -1.0

integrate on the whole likelihood prior on 6
parameter space

0.0

57



Uncertainties associated with the sampling (MCMC)

Particle filtering methods:

%  parallel MCMC chains that simultaneously sample the whole Sequential Monte Carlo (SMC)
parameter space 4.0

% less sensitive to starting values but requires large number of

draw e
3.0 e ©
%  marginal likelihood is easier to evaluate! i
= allows model comparison assuming that prior probabilities L 3 2 &
are equal Y 1{?»
o ,
c 2.0 5 3 < e

MARGINAL LIKELIHOOD

— — — el
p(OIM)[= | p(O18, M)p( 6| M)db
0

/ 0.0 : : ;
4.0 -3.0 2.0 -1.0 0.0

integrate on the whole ~ !lkelihood prior on 6 u
parameter space
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Key points and some questions

uncertainties with the choice of the best ghprl’c?” eauzva/alent(’j?l T .
- . oula more complex moadels be ravorea as more likely (o
configuration reproduce a complex ISM structure? (and how?)
—)
Rb — pM1|0)
L p(MzI—O) assuming that the
R p(6|M1 (M;)| prior probabilities of
bayes & p(OIMp(My) | all models are equal
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Key points and some questions

configuration

%  Topological models add a layer of
uncertainties with the choice of the best

Riseer = pM,i0)
es — —
T o
R p(OIM;Ip(My)
bayes X —=
p(OIMIp(My)

assuming that the
prior probabilities of
all models are equal

%  Particle filtering sampling methods are well

adapted to sample multi-peaked distributions
and evaluate easily the marginal likelihood.

==

#1: Is it ok to assume that all models are

a priori equivalent ?
Should more complex models be favored as more likely to
reproduce a complex ISM structure? (and how?)

#2: How should we representent
multi-peaked distributions in which the

mean, median are not representative?
Smooth representations may be limited to interpret trends
in samples, especially for incomplete samples
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Key points and some questions

uncertainties with the choice of the best ghprl’c?” eauzva/alent(’j?l oo ovored el
conflquration ould more compiex modaels be ravored as more li eyl‘o

reproduce a complex ISM structure? (and how?)

—)
R _ pM,]0)
bayes — p—( AMoiO assuming that the #2: How should we representent
p(@IMi M| prior probabilities of multi-peaked distributions in which the
Rbayes X BiMalpm,) | all models are equal mean, median are not representative?
P 2 2 Smooth representations may be limited to interpret trends

in samples, especially for incomplete samples

%  Particle filtering sampling methods are well _ _
adapted to sample multi-peaked distributions #3: What is the impact of the set of

and evaluate easily the marginal likelihood. tracers used as input?

In theory better to have as many as possible but require
more complex models. Tracers not well understood may
bias the solution.

% The posterior distribution reflects the | >
knowledge associated with a given set of #4: What is the impact assuming fixed
lines and their associated (measured) gaussian uncertainties for the input data?
uncertainties assumed to be gaussian. Ideally, the fitting process should be included on-the-fly

with a new fit at each draw in the MCMC (expensive)
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Example: Representing the individual and global PDFs
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12+log(O/H)
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Example: Representing the uncertainty on topology

100 £ 0.253 100.. 0.086 100.. 0.067
@ 2 sectors - @ 3 sectors
0 =0.37 < @ 1 sector e 0 =-0.2b I0046 0 =-0.24 I0035
80T 80+
52 32
< g 2 3 60t
R e 8 2 B
= g I E =
g I L
W& S o £ ¥ o401
2 [a)
20T
23 6 2822987 Q 8/ 391 2 "}
] || 0- L 0.002 0- :
7.0 7.5 8.0 8.5 7.0 7.5 8.0 8.5 7.0 7.5 8.0 8.5
12+log(O/H) 12+log(O/H) 12+log(O/H)
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Example: Representing the uncertainty on topology

Choice #1: representing only the “best” models

I 0.072
0.032

fesc,HII [%]

100

80T
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401

20+

0 =-02 ® 2 sectors
¢ 3 sectors
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75 80 85
12+log(O/H)

-0.024

~0.020

r0.016
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r0.011
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1:esc,HII [%]

Choice 2#: representing only the “best” models
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Figures from Ramambason+22

12+log(O/H)

-0.003
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Evaluating uncertainties for components
separation

Erwan Allys - LPENS, Paris,
with C. Auclair, F. Boulanger, P. Richard

Colloque PCMI 2022
Paris, October 26" 2022

B psix LPENS

LABORATOIRE DE PHYSIQUE
DE L'ECOLE NORMALE SUPERIEURE
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Dust/CIB componen:

Outline

© Dust/CIB components separation

2 components separ



Dust/CIB components separation Dust/CIB components separation

Dust/CIB components separation

e Herschel spider field at 250um

Galactic longitude

134° 135°
14
12
73°30/ 48
00’ 10
8 ) 8
S . ¢
=) 00’ E =
= a =
S = 6=
g g g
3 10°30° & )
[a} 4
72°30/
2
0
2 41°00'

10b48™m 4om agm 30m

Right Ascension (J2000)

— Thermal dust emission and Cosmic Infrared Background (CIB)
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Dust/CIB components separation Dust/CIB components separation
Application to Herschel data

Dust/CIB components separation

e Scientific objective

» Mixture of components in observations
— d = s+ k with d data, s dust, £ CIB
» Use non-Gaussian information to separate them
— close SED of thermal dust and CIB
— Work at a single frequency (to begin with)
> Realistic simulations hard to find
= Work only from observational data

— From observational statistics of k, recover statistics of s
Auclair et al, in prep.
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Dust/CIB components separation Dust/CIB components separation
Application to Herschel data

Components separation algorithm

e Application on Herschel spider field

> Clean ko CIB observation from Lockman hole field
— estimation of the statistics of k
> Deformation of d to an estimate § of s (Regaldo+4 2021, Delouis+ 2022)
— gradient descent in pixel space
— several constraints from scattering statistics
— happy to discuss more :)
» We obtain a § map, on which we evaluate the statistics

— Focus on statistics of s (not deterministic at small scales)
— Only d and kg are used in the process !

5 Erwan Allys Evaluating uncertainties for components separs



pplication to Herschel data

e Input data and separated components

Herschel SPIRE observation Separated dust

1000 . 12

=
(=
0=
<
9q
4
0
200 40 600 S0 1000 200 400 600 S0 100
Contamination model Separated contamination
3
1000 1000
2
50
1
) =
60 )&
<
@

100 600 00 1000 100 600 00 1000

— Look nice, but what are the uncertainties ?
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Uncertainties in the componen

Outline

e Uncertainties in the components separation

7 components separ



>n on mock pipeline
Uncertainties in the components separation from mock d

Evaluating uncertainties

e Difficulties for evaluating uncertainties...

> Only a few input maps
» Highly non-linear separation

— First approach with a validation on mock data

8 Erwan Allys Evaluating uncertainties for components separs



Validation on mock data pipeline

Uncertainties in the components separation

Validation pipeline on mock data

e Constructing a set of mock data

> Perform a separation with known dust
> Surrogate dust from observations
— same field of view, gas from HI data
— avoid CIB contamination
— denoising and map construction with ROHSA (Marchal4 2019)
— lower resolution = smaller patch
> CIB from Lockman Hole can be cut in several patches

9 Erwan Allys Evaluating uncertainties for components separ



Validation on mock data pipeline
Uncertainties in the components separation Results from mock data

Validation pipeline on mock data

e Different types of errors

» Same statistics for k£ and ko
— algorithm error

» Statistical variance for k and kg
— model error

— Model error dominates on all scales

10 Erwan Allys Evaluating uncertainties for components separ



Validation on mock data pipeline
Uncertainties in the components separation Results from mock data

Results from mock data

e Power spectrum

107
Sm

100

10°

10

Power spectra [Jy?/sr]

10%

107! 10°
k [arcmin™)

— lo-variability 4+ bias w.r.t. truth available.
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Validation on mock data pipeline
Uncertainties in the components separation Results from mock data

Results from mock data

e Beyond power spectrum (increments pdf, pixels pdf, RWST)

N 0.025
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0.020
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0.35 351 R

—

2. 0.30 S §
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i I om ’
. 2 0.15 pl
0.10 "
a5 . 60

0.00

Ganiso

— Correct statistics reproduced on all but smallest scales

12 Erwan Allys Evaluating uncertainties for components separ




Validation on mock data pipeline
Uncertainties in the components separation Results from mock data

Estimating uncertainties with real data

e Uncertainties: mock data are not real data...

> We have only one sample of the CIB
— no direct variance assessment
» Mock data are with smaller patches
— how to extrapolate to larger patches ?
» The HI map is not a dust map
— how to extrapolate to an unknown component ?

e We can extrapolate from the application on mock data
— What’s the better way to do so ?

e What other method could we use ?

13 Erwan Allys Evaluating uncertainties for components separ



Validation on mock data pipeline
Uncertainties in the components separation Results from mock data

Estimating uncertainties with real data

e Uncertainties: mock data are not real data...

> We have only one sample of the CIB
— no direct variance assessment
» Mock data are with smaller patches
— how to extrapolate to larger patches ?
» The HI map is not a dust map
— how to extrapolate to an unknown component ?

e We can extrapolate from the application on mock data
— What’s the better way to do so ?

e What other method could we use ?

Thanks for your attention !
— and happy to discuss components separation :) —
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Second Session Wrap-Up: What Can We Be Certain About?

® Should we try to account for every effects, from the instrumental biases
to the physics of our target, as well as the different contaminations, in
one big single model?

o What is the meaning and potential usefulness of a good fit with a wrong
model?

o How to validate a simulation that can not be fit to some observations?

o Have we been too pessimistic? Isn't there something called "the law of
large numbers" that will guarantee that all our uncertainties average out?

F. Galliano, K. Demyk & P. Gratier PCMI - Uncertainty workshop



Third Session:
How to Publish Uncertainties & Allow Future Studies to Use
Them Consistently



Plotting distributions

Most of the time we have access to a sample of points

* Show approximations of the distributions (histograms, kde)
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—— Kernel Density Estimation
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Plotting distributions

Most of the time we have access to a sample of points

e More difficult with increasing dimensions: corner (or triangle)
plots




Quoting errors

Most of the time we have access to a sample of points

Summarising the whole distribution with a “central value” and an
“uncertainty” often called point estimates

* mean =+ standard deviation

 median =+ interpercentile range (often p16 and p84 to match the
1 sigma interval for a 1d gaussian distribution)

* For higher dimensions the uncertainty can be summarised in a
covariance matrix (d x d but only need to store d(d-1)/2 values)



Plotting errors

Most of the time we have access to a sample of points
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Sometimes we don’t have a sample of points

 “Black box” optimisers

 If they give uncertainties usually computed from local curvature
around “maximum likelihood” or “minimum chi2” and assume
gaussian errors => covariance matrix.

 |If no uncertainty given you can try bootstrapping

* 1/ create many (104-°) new datasets by resampling with
replacement

e 2/ compute the value you want for each of these resampled
dataset

* 3/ you now have a sample of values you can deal with as in the
previous slides



Transmitting this information
What to send ?

send the samples themselves

choose a family of analytic distributions, compute the associated
parameters and send those

send the parametric description (histogram or kde)
send the “point estimates” (possibly with the covariance matrix)
for bayesian inference: send the dataset + likelihood function +

prior definitions and let the others resample as many points as
they want



Transmitting this information

How to send it ?

A table in your manuscript

An ASCI| table

A structured format json, pandas, python pickle (beware of
strange formats they don’t live forever)

for larger datasets: binary formats (hdf5, netCDF, fits, etc)

 Some formats are trying to become standards eg arviz
InferenceData structure for samples from a distribution

Maybe one day: the python scripts that create the figures, tables
of your manuscript from the data. Some editors already ask for
the datasets



Third Session Wrap-Up: What Can We Be Certain About?

o Would it be profitable to the community to set a standard in the way
uncertainties are estimated and published?

® Should we create a network of people interested in helping each other to
achieve this task?

e Who should centralize the uncertainties of all published studies (A&A,
the CDS, etc.)?

e Should we declare October 26 + 1 “Uncertainty Day” at UNESCO?

F. Galliano, K. Demyk & P. Gratier PCMI - Uncertainty workshop



