(3) Updated Belief

(2) Empirical Evidence

Accounting for the Uncertainties, from the Laboratory to the Observations, through the Model

(1) Prior Belief

Frédéric GALLIANO, Karine DEMYK & Pierre GRATIER

 A measure w/o uncertainties is meaningless.

- A measure w/o uncertainties is meaningless.
- Uncertainties provide a metric to test models & theories.

- A measure w/o uncertainties is meaningless.
- Uncertainties provide a metric to test models & theories.

- A measure w/o uncertainties is meaningless.
- Uncertainties provide a metric to test models & theories.

Experiments

Experiments

Observations

Experiments

Observations

Models/Simulations

ISM studies often rely on long chains of heterogeneous data

ISM studies often rely on long chains of heterogeneous data

Our object of study impacts the way we work

• Small samples.

ISM studies often rely on long chains of heterogeneous data

Experiments

Observations

Models/Simulations

- Small samples.
- Rather small teams.

ISM studies often rely on long chains of heterogeneous data

Experiments

Observations

Models/Simulations

- Small samples.
- Rather small teams.
- Cosmology: large teams on the same data ⇒ need standardized, reproducible uncertainties.

ISM studies often rely on long chains of heterogeneous data

Experiments

Observations

Models/Simulations

- Small samples.
- Rather small teams.
- Cosmology: large teams on the same data ⇒ need standardized, reproducible uncertainties.

ISM studies often rely on long chains of heterogeneous data

Experiments

Observations

Models/Simulations

Our object of study impacts the way we work

- Small samples.
- Rather small teams.
- Cosmology: large teams on the same data ⇒ need standardized, reproducible uncertainties.

(Planck collaboration)

F. Galliano (DAp, CEA/Saclay)

Galaxies (multi-λ)

(Galliano et al., 2021)

F. Galliano (DAp, CEA/Saclay)

Objectives of the Workshop

Have a general discussion about uncertainties & their associated methods.

- I Have a general discussion about uncertainties & their associated methods.
- 2 Provide an overview of the way they are taken into account in the different fields of ISMology ⇒ give grounded examples.

- I Have a general discussion about uncertainties & their associated methods.
- 2 Provide an overview of the way they are taken into account in the different fields of ISMology ⇒ give grounded examples.
- Give momentum to initiatives that could lead to a standardization of the way they are taken into account and published.
| 08:30-08:55 | INT | RODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL |
|----------------------------|---------------------------|--|
| 08:30-08:40 | Frédéric GALLIANO | Motivations & objectives of the workshop - An example of a nested uncertainty problem |
| 08:40-08:50
08:50-08:55 | Marie GUEGUEN
Everyone | A philosopher's viewpoint on identifying, quantifying $\&$ communicating uncertainties $\ensuremath{Discussion}$ |

08:30-08:55	INT	RODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL
08:30-08:40	Frédéric GALLIANO	Motivations & objectives of the workshop - An example of a nested uncertainty problem
08:40-08:50	Marie GUEGUEN	A philosopher's viewpoint on identifying, quantifying & communicating uncertainties
08:50-08:55	Everyone	Discussion
08:55-10:00	QUAN	TIFYING EXPERIMENTAL & OBSERVATIONAL UNCERTAINTIES
08:55-09:05	Karine DEMYK	An overview of the challenges of estimating experimental uncertainties
09:05-09:15	Marco MINISSALE	Uncertainties in ice laboratory experiments
09:15-09:20	Everyone	Discussion
09:20-09:30	Lucas EINIG	Signal extraction from noisy line cubes: the problem of applying hyperspectral imag- ing methods
09:30-09:35	Everyone	Discussion
09:35-09:45	Nathalie YSARD	Uncertainties in dust models
09:45-10:00	Everyone	Discussion

08:30-08:55	INT	TRODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL
08:30–08:40	Frédéric GALLIANO	Motivations & objectives of the workshop - An example of a nested uncertainty problem
08:40-08:50	Marie GUEGUEN	A philosopher's viewpoint on identifying, quantifying & communicating uncertainties
08:50-08:55	Everyone	Discussion
08:55–10:00	QUAN ⁻	TIFYING EXPERIMENTAL & OBSERVATIONAL UNCERTAINTIES
08:55-09:05	Karine DEMYK	An overview of the challenges of estimating experimental uncertainties
09:05-09:15	Marco MINISSALE	Uncertainties in ice laboratory experiments
09:15-09:20	Everyone	Discussion
09:20-09:30	Lucas EINIG	Signal extraction from noisy line cubes: the problem of applying hyperspectral imag- ing methods
09:30-09:35	Everyone	Discussion
09:35-09:45	Nathalie YSARD	Uncertainties in dust models
09:45-10:00	Everyone	Discussion

10:00-10:30

COFFEE BREAK

08:30–08:55	INT	FRODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL
08:30-08:40	Frédéric GALLIANO	Motivations & objectives of the workshop - An example of a nested uncertainty
		problem
08:40-08:50	Marie GUEGUEN	A philosopher's viewpoint on identifying, quantifying & communicating uncertainties
08:50-08:55	Evervone	Discussion
08:55–10:00	QUAN ⁻	TIFYING EXPERIMENTAL & OBSERVATIONAL UNCERTAINTIES
08:55–09:05	Karine DEMYK	An overview of the challenges of estimating experimental uncertainties
09:05-09:15	Marco MINISSALE	Uncertainties in ice laboratory experiments
09:15-09:20	Everyone	Discussion
09:20-09:30	Lucas EINIG	Signal extraction from noisy line cubes: the problem of applying hyperspectral imag-
		ing methods
09:30-09:35	Everyone	Discussion
09:35-09:45	Nathalie YSARD	Uncertainties in dust models
09:45-10:00	Everyone	Discussion
10:00-10:30		COFFEE BREAK

10:30-11:20	PROPAGAT	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING
10:30-10:40	Frédéric GALLIANO	Techniques to propagate uncertainties through data processing
10:40-10:45	Everyone	Discussion
10:45-10:55	Lise RAMAMBASON	Challenges for topological models of the interstellar medium
10:55-11:00	Everyone	Discussion
11:00-11:10	Erwan ALLYS	Evaluating uncertainties for components separation from observational data
11:10-11:20	Everyone	Discussion

08:30-08:55	INT	FRODUCTION: WHY UNCERTAINTIES ARE INSTRUMENTAL
08:30-08:40	Frédéric GALLIANO	Motivations & objectives of the workshop - An example of a nested uncertainty
		problem
08:40-08:50	Marie GUEGUEN	A philosopher's viewpoint on identifying, quantifying & communicating uncertainties
08:50-08:55	Everyone	Discussion
08:55–10:00	QUAN	TIFYING EXPERIMENTAL & OBSERVATIONAL UNCERTAINTIES
08:55-09:05	Karine DEMYK	An overview of the challenges of estimating experimental uncertainties
09:05-09:15	Marco MINISSALE	Uncertainties in ice laboratory experiments
09:15-09:20	Everyone	Discussion
09:20-09:30	Lucas EINIG	Signal extraction from noisy line cubes: the problem of applying hyperspectral imag-
		ing methods
09:30-09:35	Everyone	Discussion
09:35-09:45	Nathalie YSARD	Uncertainties in dust models
09:45-10:00	Everyone	Discussion
10:00-10:30		COFFEE BREAK
10:30-11:20	PROPAGAT	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING
10:30-11:20 10:30-10:40	PROPAGAT Frédéric GALLIANO	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing
10:30-11:20 10:30-10:40 10:40-10:45	PROPAGAT Frédéric GALLIANO Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data
$\begin{array}{c} 10:30{-}11:20\\ 10:30{-}10:40\\ 10:40{-}10:45\\ 10:45{-}10:55\\ 10:55{-}11:00\\ 11:00{-}11:10\\ 11:10{-}11:20\\ \end{array}$	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-2:00	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-12:00 11:20-11:25	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion NCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY Quoting and plotting errors, and accounting for their correlation with ancillary phe-
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-11:25	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-12:00 11:20-11:25 11:25-11:35	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion NCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY Quoting and plotting errors, and accounting for their correlation with ancillary phe- nomena Discussion
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-12:00 11:20-11:25 11:25-11:35 11:35-11:40	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER Everyone Pierre GRATIER	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion NCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY Quoting and plotting errors, and accounting for their correlation with ancillary phe- nomena Discussion How to store and distribute this information
10:30-11:20 10:30-10:40 10:40-10:45 10:45-10:55 10:55-11:00 11:00-11:10 11:10-11:20 11:20-11:25 11:25-11:35 11:35-11:40 11:40-11:50	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER Everyone Pierre GRATIER Everyone Pierre GRATIER Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion INCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY Quoting and plotting errors, and accounting for their correlation with ancillary phe- nomena Discussion How to store and distribute this information Discussion
$\begin{array}{c} 10:30-11:20\\ 10:30-10:40\\ 10:40-10:45\\ 10:45-10:55\\ 10:55-11:00\\ 11:00-11:10\\ 11:10-11:20\\ 11:20-11:20\\ 11:20-11:25\\ 11:25-11:35\\ 11:35-11:40\\ 11:40-11:50\\ 11:50-12:00\\ \end{array}$	PROPAGAT Frédéric GALLIANO Everyone Lise RAMAMBASON Everyone Erwan ALLYS Everyone HOW TO PUBLISH U Pierre GRATIER Everyone Pierre GRATIER Everyone Everyone Everyone	ING UNCERTAINTIES THROUGH DATA PROCESSING & MODELING Techniques to propagate uncertainties through data processing Discussion Challenges for topological models of the interstellar medium Discussion Evaluating uncertainties for components separation from observational data Discussion INCERTAINTIES & ALLOW FUTURE STUDIES TO USE THEM CONSISTENTLY Quoting and plotting errors, and accounting for their correlation with ancillary phenomena Discussion How to store and distribute this information Discussion Conclusion: what to do next?

Why are uncertainties so instrumental? A philosopher's viewpoint

Marie Gueguen, Marie Słodowska Curie fellow Institut de Physique de Rennes 1 PCMI, 26 Octobre 2022

@nwo.nl

Astrochemistry

1940's

(McKellar, PASP, 52, 187, 1940; Adams, Astrophysics J., 93, 11, 1941; Douglas & Herzberg ,93, 11, 1941, Douglas & Herzberg 94, 381, 94, 381, 1941)

 Astrochemistry is a young interdisciplinary field, that started with the detection of CH, CH⁺, CN in the

Astrochemistry

- What characterizes young IDF:
 - Rapid collection of observational data that requires interpretation Theoretical and experimental progresses not always able to keep up with this rapid pace => Non-predictive models.

- Partial representation
- Minimal modelling principle
- Construction: idealizations, approximations and simplifications

What is a model?

- Partial representation
- Minimal modelling principle
- Construction: idealizations, approximations and simplifications
- Computational model: high epistemic opacity (= not an easy task to contribute which input data contribute the most to the model's output)

What is a model?

Model development in context of high uncertainties

Model

@nwo.nl

?

Observations

Model development in context of high uncertainties

<u>Model</u>

?

Observations Incomplete Interpreted on the basis of uncertain data Inherent uncertainties

...

Model development in context of high uncertainties

<u>Model</u>

Partial representation Idealizations (chemical networks, type of chemistry, astrophysical conditions, etc..) Uncertainties in the input

@nwo.nl

Observations Incomplete Interpreted on uncertain data Inherent uncertainties

- - -

Astrochemistry

- Non-predictive models:
 - Uncertainties higher on the theoretical side than on the observational side
 - (Dis)agreement with observations not interpretable

@nwo.nl

Astrochemistry

- Non-predictive models:
 - to!
 - needed.

But: identifying and reducing uncertainties is not only the path to predictivity, but it is also the only tool you have to break the epistemic opacity of your model and get a better understanding of what your model is sensitive

 It also allows you to target where experimental and theoretical progresses are the most

But which uncertainties for which task?

- Parametric uncertainties
- Model uncertainties
- Unknown unknowns

Uncertainties

Dynamical calculations

Approximations

PES

Uncertainties

PES Size of the grid, basis, fit

Dynamical calculations

Approximations

Uncertainties

PES

Dynamical calculations

Cross-sections, Collisional data

Approximations

Uncertainties

Dynamical calculations

Approximations

Born-Oppenheimer ?

Uncertainties

Example 2: Low-T reaction rate

Uncertainties

Example 2: Low-T reaction rate

Parametric

 $ln k(T) = \alpha + \beta x(T)$ -> \alpha, \beta, \sigma, \sigma\beta \text{ et } \varepsilon\beta \text{ et } \varepsilon\beta \text{ et } \varepsilon\beta \text{ for } \varepsilon\beta \text{ et }

Extrapolation

Model

Unknown unknowns

Uncertainties

Example 2: Low-T reaction rate

Unknown unknowns

Uncertainties

Example 2: Low-T reaction rate

constants

Uncertainties

Example 2: Low-T reaction rate

Missing chemistry? Missing physics?

Example 1: Low-T reaction rate constants

- Uncertainty Propagation: each reaction rate constant k_i / all parameters are randomly perturbed a large number of times according to a pre-definite probability distribution
- Sensitivity analysis (Saltelli, 2020): study of how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model input
 - identify correlations between inputs and outputs

Uncertainties coming from heterogenous sources are propagated in the model

- Generates an empirical distribution of the output of interest
- UC in the output decomposed according to source

Saltelli et al., 2019, Env. Mod. &Softw 114

Fig. 4. Density and number of sensitivity analysis articles returned by search criteria, by subject.

Saltelli et al., 2019, Env. Mod. &Softw 114

1500

Uncertainties

Example 1: Low-T reaction rate

Uncertainties

Example 1: Low-T reaction rate

Methodology

The methodology we use to improve our knowledge of the photochemistry of Titan's atmosphere is the following:

Figure 1. Methodology based on two tasks to improve the chemical networks of photochemical models. These two tasks serve as an efficient basis for new studies focused on selected reactions, which in return can improve significantly the chemical scheme used in models. Improvement of models favour new detection attempts and put better constraints on physical parameters.

Methodology for the improvement of photochemical models

Conclusion

- black box - especially what the model is sensitive too
 - sensitivity analysis.

and what is negligible

 Optimization of your model in terms of computational cost.

- \bullet
- \bullet the most. (Saltelli, 2020,

Why are uncertainties instrumental? Because exploiting uncertainties helps to better understand a model that would otherwise remain a

> Target theoretical and experimental progresses thanks to uncertainty propagation methods and

Forcing a non-predictive model to match observations bu tuning parameters not empirically constrained amounts to increasing its epistemic opacity and to loose your two main sources of information!

UQ methods and sensitivity analysis: important interdisciplinary facilitators both in terms of uncertainty communication and of targetting where experimental and theoretical progresses will pay off

Conclusion

- black box especially what the model is sensitive too
 - sensitivity analysis.

and what is negligible

 Optimization of your model in terms of computational cost.

- the most. (Saltelli, 2020,

Why are uncertainties instrumental? Because exploiting uncertainties helps to better understand a model that would otherwise remain a

> Target theoretical and experimental progresses thanks to uncertainty propagation methods and

Forcing a non-predictive model to match observations bu tuning parameters not empirically constrained amounts to increasing its epistemic opacity and to loose your two main sources of information!

UQ methods and sensitivity analysis: important interdisciplinary facilitators both in terms of uncertainty communication and of targetting where experimental and theoretical progresses will pay off

Acknowledgments

COLLEXISM

Institut de Physique de Rennes 1

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.101026214.

Thank you!

(3) Updated Belief

(2) Empirical Evidence

First Session: Quantifying Experimental & Observational Uncertainties

Overview of the challenges of estimating experimental uncertainties

Karine Demyk

K. Demyk, PCMI, workshop « Uncertainties », October, 2022

How do we / should we do?

- list all sources of uncertainties and errors
- calibrate the experiments
- estimate the uncertainties/errors coming from
 - measurements
 - data reduction
 - data modelling / fitting needed to extract the studied quantity
- explain all choices made, keep track of all steps
- not always easy to quantify!
- highly dependent on the experiment

Example 1: measurement of opacities (MAC)

matrix

$$MAC = -\frac{S}{m} \times ln(T)$$
 T = transm
m = samp

spectrometer stability

 $\Delta MAC = \frac{\delta T}{T} \times \frac{S}{m}$

uncertainty on the sample mass

 $\Delta MAC_m = MAC(\lambda) \times \frac{\delta m}{m}$

From spectroscopic measurements on a population of grains embedded in a

Example 1: calculation of optical constants

A number of assumptions have to be made :

- ➡ To relate the MAC to (n,k) :
 - grain size
 - grain shape
- To calculate (n,k) knowing the MAC
 - value of the refractive index in the visible
- Effect of a possible agglomeration in the pellet ?

C e visible h in the pellet ?

Example 1: estimation of the error on the optical constants

Error on n_{vis} : • n_{vis} varies by $\pm 5\%$

Error on grain shape :

- prolate vs oblate • a/b varies by $\pm 40\%$

[Demyk+2022]

Error on grains size (Rayleigh limit assumption):

- DDA calculations
- prolate grains
- measured size distribution

Example 1 : Error estimation on Mg-rich silicate optical constants:

Quadratic sum of the errors \Rightarrow total uncertainty on n and k

 $\delta n_{tot} \sim 4 - 6\%$, dominated by uncertainty on nvis

- δk_{tot} : $\lambda < 30 \,\mu\text{m}$: ~5% (up to ~13% in the silicate feature , dominated by grain size uncertainty $\lambda > 30 \ \mu\text{m}$: 5 to 25 % depending on sample, dominated by grain shape

K. Demyk, PCMI, October, 2022

Example 2 : determination of anahormanicity factor

 From spectroscopic measurements on a population of grains embedded in a matrix at varying temperature: 13 - 723 K

- baseline subtraction
- peak position determination
- fit the λpeak T relation

Example 2: determination of anahormanicity factor

- data reduction:
 - impact of the baseline determination

Example 2: determination of anahormanicity factor

- data modelling: method to determine the band position and width
 - peak maximum
 - area-weighed peak maximum
 - spectral decomposition with gaussians, lorentzians

Example 2: determination of anahormanicity factor

UNCERTAINTIES IN ICE LABORATORY EXPERIMENTS

Marco Minissale

What we measure?	 Reaction rates Thermal and non- thermal desorption rates Diffusion constants * 	

* Non-exhaustive list

CNTS (Aix*Marseille universite	Marco Minissale - PCMI - Paris	26/10/2022
Ingredients: what we need?	 Flux of atom/molecule Sample temperature Flux of particles (photons, electrons, ions,) * 	Calibration and systematic errors
How we measure?	 Thermocouples Mass and Infrared spectroscopy * 	Instrumental errors (i.e. Accuracy and sensitivity)
What we measure?	 Reaction rates Thermal and non- thermal desorption rates Diffusion constants * 	Model uncertainty – Which parameters and physical-chemical processes?

* Non-exhaustive list

26/10/2022

FORMOLISM setup, CY Cergy-Paris University

Aix*Marseille

PIN

Two examples:

-Diffusion/desorption of oxygen atoms on cold surfaces

- Reaction on solid-phase: H₂CO+O

Cmrs

Marco Minissale - PCMI - Paris

Cnr

Marco Minissale - PCMI - Paris

Modeling diffusion/desorption kinetics

Fitting TP-DED experiments, we can find the couple E_{diff}-E_{des}

Modeling diffusion/desorption kinetics

Which ratio is the most appropriate? We need input from other experiments to evaluate the ratio

From Minissale, Congiu & Dulieu MNRAS 2016

26/10/2022

H₂CO+O reaction in solid-phase

26/10/2022

H₂CO+O reaction in solid-phase

 $CO_2 + H_2$

H₂O+CO

Chang & Barker (1979) Wellman et al.(1991)

Activation barrier= 1560 K

The presence of oxygen atoms makes harder the estimation of – activation barrier in solid-phase

- The O atoms are mixed with O_2 molecules.
- O atoms diffuse quite fast on surface
- O atoms can react each other

Aix*Marseille

PIN

26/10/2022

H₂CO+O reaction in solid-phase

14

Activation energy

H₂CO+O reaction in solid-phase

$$\begin{aligned} \mathsf{O}'(t) &= 2\tau \,\phi_{\mathsf{O}_2 \text{off}} \,(1 - 2\mathsf{O} - \mathsf{O}_2) - (1 - \tau) \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{O} \\ &- r_{\mathsf{a}\mathsf{E}\mathsf{R}} 2\tau \phi_{\mathsf{O}_2 \text{off}} \mathsf{H}_2 \mathsf{C}\mathsf{O} - \mathsf{O} \,r_{\mathsf{D}\mathsf{e}\mathsf{s}\mathsf{o}_0} \\ \mathsf{O}'_2(t) &= (1 - \tau) \,\phi_{\mathsf{O}_2 \text{off}} \,(1 - \mathsf{O} \,(1 - \epsilon)) - 2\tau \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{O}_2 \\ &+ 2\tau \,(1 - \epsilon) \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{O} - \mathsf{O}_2 \,r_{\mathsf{D}\mathsf{e}\mathsf{s}\mathsf{o}_2} \\ \mathsf{O}'_3(t) &= (1 - \tau) \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{O} + 2\tau \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{O}_2 \\ \mathsf{H}_2 \mathsf{C}\mathsf{O}'(t) &= -r_{\mathsf{a}\mathsf{E}\mathsf{R}} \,2\tau \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{H}_2 \mathsf{C}\mathsf{O} \\ \mathsf{C}\mathsf{O}'_2(t) &= r_{\mathsf{a}\mathsf{E}\mathsf{R}} \,2\tau \,\phi_{\mathsf{O}_2 \text{off}} \,\mathsf{H}_2 \mathsf{C}\mathsf{O}. \end{aligned}$$

PIN

Aix*Marseille

$$r_{\text{aER}} = e^{-\frac{E_a}{T_{\text{eff}}}}$$

$$r_{\text{Deso}_0} = v e^{\frac{-E_{\text{Odes}}}{T}}$$
Eley-Rideal
$$r_{\text{Deso}_2} = v e^{\frac{-E_{\text{O}_2\text{des}}}{T}},$$

 $O'(t) = -4 k_{\text{Odiff}} O O - k_{\text{Odiff}} O O_2$ - $r_{\text{aLH}} k_{\text{Odiff}} O H_2 CO - O r_{\text{Deso}_0}$ $O'_2(t) = 2 k_{\text{Odiff}} O O \epsilon - k_{\text{Odiff}} O O_2$ - $O_2 r_{\text{Deso}_2}$ $O'_3(t) = k_{\text{Odiff}} O O_2$ H₂CO'(t) = $-r_{\text{aLH}} k_{\text{Odiff}} O H_2 CO$ CO'_2(t) = $r_{\text{aLH}} k_{\text{Odiff}} O H_2 CO$,

where

$$k_{\text{Odiff}} = v e^{\frac{-E_{\text{Odiff}}}{T}}$$

 $k_{\text{aLH}} = e^{\frac{-E_a}{T}}$
Langmuir-
Hinshelwood

Source of uncertainty: fluxes of O and $O_2(\phi)$, H_2CO initial coverage, chemical desorption (ϵ), desorption parameters (ν , E_{des}), diffusion constant (E_{diff})

Simulation of experimental results

H₂CO+O reaction in solid-phase

- Two coupled parameters: H₂CO+O barrier and O diffusion
- The pure thermal O diffusion estimated to be between 900 and 600 K

Minissale et al., A&A 2015

Aix*Marseille

PIN

26/10/2022

Ingredients: what we need?	Experimental and systematic errors	Experimental uncertainty
How we measure?	Instrumental errors	can be " easily " taken into account and estimated or reduced
What we measure?	Model uncertainty – which physical-chemical processes?	Often the main source of uncertainty comes from coupled parameters / coupled processes

* Non-exhaustive list

CINIS

Aix*Marseille

PIM

26/10/2022

Desorption induced by chemistry

PIN

Aix*Marseille

DED (During Exposure Desorption)

O₂ ices exposed to D atoms

Thank you for your attention

20

Signal extraction from noisy line cubes The problem of applying hyperspectral imaging methods

Lucas Einig

ORION-B dataset

¹³CO (1-0) line

C¹⁷O (1-0)

Low rank asumption based methods

 $\hat{f}, \, \hat{g} = \operatorname*{arg\,min}_{f,\,g} ||\mathbf{I} - g(\Theta)||_2^2 \quad \mathrm{s.t.} \quad \Theta = f(\mathbf{I}) \, \mathrm{and} \, \dim \Theta \ll \dim \mathbf{I}$

Redundancy between channels

Hyperspec. data Indian Pines

¹³CO (1-0) line

Example channel 2 Transient

Example channel

We propose to estimate the intrinsic dimension of a dataset using the well known "elbow method" in a non-linear framework.

Figure: Mean absolute deviation between input and reconstructed data.
Limitations of low rank methods

Limitations

- The methods based on a low rank assumption are very suitable for continuum cubes but more limited for line cubes.
- The higher the intrinsic dimension, the lower the redundancy and the more complex the signal extraction.

Concerned methods

These conclusions apply to any method based on a low rank assumption, including

- Principal Component Analysis (PCA).
- Autoencoder neural network (AE).
- Low rank tensor decomposition.

Improved neural network for molecular line cubes

Developed solutions

- Adapt the network architecture to the data
- Use prior knowledge

Figure: Example of noisy and denoised data with the **Local autoencoder** with prior knowledge.

(A very small part of the) Uncertainties in the ISM grain models

N. Ysard (IAS, Orsay)

Basics of all dust models

- Chemical composition
 - \rightarrow m = n + ik : from the lab ? Empirical ?
 - \rightarrow composite grains ?
 - \rightarrow inclusions, ice mantle ?
- Structure
 - \rightarrow compact vs. porous
 - → core/mantle
 - \rightarrow single grains vs. aggregates
 - \rightarrow spheres vs. spheroids

Absorption efficiency $Q_{abs}(a,\lambda,T?)$ Scattering efficiency $Q_{sca}(a,\lambda)$ Scattering phase function $G(a,\lambda)$ Heat capacity C(a, T)

non-trivial step

- Size distribution
 - → a_{min}, a_{max}
 - \rightarrow log-normal, power law, MRN, weird ?

Calculations of the optical properties Which model to choose ?

- Compact spherical grains
 Compact spherical grains with mantles
- Porous grains
 Composite grains → random distribution
- Aggregates with one-point contact
- Aggregates with contact surface area Grains of any shape Composite grains → controlled distribution
- Spheroidal grains with or without mantles

Mie: BHMIE BHCOAT *Bohren & Huffman (1983)* Effective Medium Theory EMT Maxwell Garnett or Bruggeman *Bohren & Huffman (1983)* T-MATRIX *Mischchenko (2000)* Discrete Dipole Approximation DDA *Draine & Flatau (1994)*

DDA, T-MATRIX Analytic function in the Rayleigh limit Geometric limit in the UV *Bohren & Huffman (1983)*

Uncertainties in the optical constants \rightarrow translation in the Q_{abs}

Let's assume that both n & k varies by +10 % or -10 % a = 0.1 μm

Optical constants

Uncertainties in the optical constants \rightarrow translation in the SED

Let's assume that both n & k varies by +10 % or -10 % \rightarrow silicates with a log-normal size distribution

 \rightarrow more around the peak of the SED due to \neq temperatures

Structure of the grain

Description of the grain surface → completely smooth vs. irregular

→ single grains : increase by ~ 5 % for highly irregular surface → aggregates : increase by ~ 20 % for large contact area

Choice of the calculation method

Calculations of the optical properties

- Aggregates of 8 monomers monomer → 0.1 and 1 µm compact sphere
- Three types of calculations
 DDA → « exact »
 Mie for a sphere of equivalent mass
 EMT+Mie with a = Rg and Pequivalent
- Significant differences
 - → different grain temperatures
 - \rightarrow shifted SEDs
 - \rightarrow mid-IR silicate features \neq size estimates

- Should we advocate that the ability to precisely estimate the uncertainties must be taken into account in the design of new experiments & new telescopes?
- Can we use the scatter resulting from comparing different models as a way to quantify the absolute uncertainty on our hypotheses?
- Could machines learn estimating uncertainties?

(3) Updated Belief

Second Session: Propagating Uncertainties Through Data Processing & Modeling

Evidence

(1) Prior Belief

(3) Updated Belief

(2) Empirica Evidence

Techniques to Propagate Uncertainties Through Data Processing

(1) Prior Belief

Frédéric GALLIANO

Lara PANTONI & Dangning HU

AIM, CEA/Saclay, France

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

1 Complex background subtraction \Rightarrow stars, cirrus, CIB, *etc.*;

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Spectral analysis

Spectral cube analysis \Rightarrow propagate the original uncertainties through:

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Spectral analysis

Spectral cube analysis \Rightarrow propagate the original uncertainties through:

1 Degradation to a common resolution \Rightarrow kernel convolution;

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Spectral analysis

Spectral cube analysis \Rightarrow propagate the original uncertainties through:

- **1** Degradation to a common resolution \Rightarrow kernel convolution;
- 2 Reprojection on a common grid \Rightarrow resampling;

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Spectral analysis

Spectral cube analysis \Rightarrow propagate the original uncertainties through:

- **1** Degradation to a common resolution \Rightarrow kernel convolution;
- 2 Reprojection on a common grid \Rightarrow resampling;
- 3 Line fitting \Rightarrow flux extraction.

Multi-wavelength image homogenization

Given a collection of multi- λ images \Rightarrow propagate the original uncertainties through:

- **1** Complex background subtraction \Rightarrow stars, cirrus, CIB, etc.;
- 2 Degradation to a common resolution \Rightarrow kernel convolution;
- 3 Reprojection on a common grid \Rightarrow resampling.

Spectral analysis

Spectral cube analysis \Rightarrow propagate the original uncertainties through:

- **1** Degradation to a common resolution \Rightarrow kernel convolution;
- 2 Reprojection on a common grid \Rightarrow resampling;
- 3 Line fitting \Rightarrow flux extraction.

Consequences

These steps are necessary before modeling \Rightarrow they change:

- noise level;
- its distribution;
- its correlation.

M 99 - IRAC 8 μ m (original)

(Pantoni et al., in prep.)

M 99 - IRAC 8 μ m (original)

M 99 - SPIRE 500 μ m (original)

(Pantoni et al., in prep.)

M 99 - IRAC 8 μ m (convolved)

(Pantoni et al., in prep.)

M 99 - IRAC 8 μ m (resampled)

M 99 - SPIRE 500 μ m (original)

(Pantoni et al., in prep.)

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

- PRO: Easy to implement;
 - Can account for any effect;
 - Accounts for the complexity of the noise: non-gaussianity, correlations, etc.

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

- **PRO:** Easy to implement;
 - Can account for any effect;
 - Accounts for the complexity of the noise: non-gaussianity, correlations, etc.
- **CON:** Can be long to run ($\simeq 100 \times$ the processing time);
 - Not completely rigorous (not centered).
Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

- **PRO:** Easy to implement;
 - Can account for any effect;
 - Accounts for the complexity of the noise: non-gaussianity, correlations, etc.
- **CON:** Can be long to run ($\simeq 100 \times$ the processing time);
 - Not completely rigorous (not centered).

Bayesian Modeling

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- **PRO:** Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

- **PRO:** Easy to implement;
 - Can account for any effect;
 - Accounts for the complexity of the noise: non-gaussianity, correlations, etc.
- **CON:** Can be long to run ($\simeq 100 \times$ the processing time);
 - Not completely rigorous (not centered).

Bayesian Modeling

PRO: The most rigorous method.

Analytic Work-Out

Possible to derive analytic expressions (e.g. Klein, 2021).

- PRO: Quick to run;
 - Elegant.
- **CON:** Requires some approximations: normal noise, Gaussian kernels, *etc.*;
 - Can become excessively complex \Rightarrow can not account for every effect.

Monte-Carlo Bootstrapping (frequentist approach)

Consists in adding random perturbations to the data & looping over every process.

- **PRO:** Easy to implement;
 - Can account for any effect;
 - Accounts for the complexity of the noise: non-gaussianity, correlations, etc.
- **CON:** Can be long to run ($\simeq 100 \times$ the processing time);
 - Not completely rigorous (not centered).

Bayesian Modeling

PRO: The most rigorous method.

CON: Requires a parametric model of the source morphology.

M 99 Noise Propagation: Pixel Statistics

(Pantoni et al., in prep.)

M 99 Noise Propagation: Pixel Statistics

Independent (
$$\rho = 0$$
): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sqrt{\sigma_a^2 + \sigma_b^2}$.

Independent (
$$\rho = 0$$
): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sqrt{\sigma_a^2 + \sigma_b^2}$.
Correlated ($\rho = 1$): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sigma_a + \sigma_b$.

Independent (
$$\rho = 0$$
): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sqrt{\sigma_a^2 + \sigma_b^2}$.
Correlated ($\rho = 1$): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sigma_a + \sigma_b$.

Independent (
$$\rho = 0$$
): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sqrt{\sigma_a^2 + \sigma_b^2}$.
Correlated ($\rho = 1$): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sigma_a + \sigma_b$.

Independent ($\rho = 0$): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sqrt{\sigma_a^2 + \sigma_b^2}$. Correlated ($\rho = 1$): $\sigma = \sqrt{\sigma_a^2 + \sigma_b^2 + 2\rho\sigma_a\sigma_b} = \sigma_a + \sigma_b$. \Rightarrow can feed these errors to a Bayesian SED model.

M 83 (IRS)

(Hu et al., in prep.)

(Hu et al., in prep.)

(Hu et al., in prep.)

Take-Away

Several applications require heavily processing original data before modeling.

- Several applications require heavily processing original data before modeling.
- Can account for any processing step and observing bias.

- Several applications require heavily processing original data before modeling.
- Can account for any processing step and observing bias.
- Bootstrapping is a very efficient & easy-to-implement method:
 - Add random perturbations to the original data;
 - 2 Loop over the whole processing;
 - 3 Compress the distribution only at the end.

- Several applications require heavily processing original data before modeling.
- Can account for any processing step and observing bias.
- Bootstrapping is a very efficient & easy-to-implement method:
 - Add random perturbations to the original data;
 - 2 Loop over the whole processing;
 - 3 Compress the distribution only at the end.
- \Rightarrow get a full uncertainty distribution w/ its correlations.

Challenges for topological models of the interstellar medium

PCMI - Uncertainty session October 26th 2022

Lise RAMAMBASON AIM, CEA Saclay (lise.ramambason@cea.fr)

ole Doctorale d'Astronomie & Astrophysiqu d'île-de-France

Topological models

From single-component models...

A <u>single set of parameters</u> to describe the ISM properties:

- photoionization models

<u>parameters</u>

-density -ionization parameters - stellar properties -metallicity

but also:

- photodissociation models
- shock model
- dense gas models
- dust models

- ...

Topological models

From single-component models...

A <u>single set of parameters</u> to describe the ISM properties:

- photoionization models

parameters -density -ionization

parameters - stellar

properties -metallicity

- but also:
 - photodissociation models
 - shock model
 - dense gas models
 - dust models

- ...

(e.g., Lebouteiller+17, Cormier+19, Polles+19, Ramambason+22, Richardson+14,+16)

To "topological" models...

Increase the complexity by linearly <u>combining</u> <u>several components</u> under different configurations:

e.g.,

multisector models (combining several sets of gas parameters)

- multicluster models (combining several sets of stellar parameters)
- distributions of parameters

$$\psi = U^{\alpha_U} n^{\alpha_n}.$$

Comparing models and observations

Comparing models and observations

MULTIGRIS: a Bayesian tool to automate multicomponent modeling

Lebouteiller & Ramambason, 2022 GitLab: https://gitlab.com/multigris/mgris

- model M= grid of predicted fluxes + interpolation function
- Topological configuration (number of sectors and parameters θ and priors P(θ))
- data d = observed emission lines + upper limits

$$\mathcal{L} = P(d|\theta) = \prod_{i=0}^{N} \mathcal{N}(\mu = O_i, \sigma^2 = U_i^2)$$

 \rightarrow **<u>SAMPLING</u>**: draw from the likelihood with a given sampling algorithm (MCMC)

MULTIGRIS: a Bayesian tool to automate multicomponent modeling

What is uncertain in our workflow?

MULTIGRIS: a Bayesian tool to automate multicomponent modeling

What is uncertain in our workflow?

Uncertainties associated with the choice of the best configuration

★ Which topological model is favored by the knowledge from a given set of lines?
⇒ Minimal level of model complexity

Uncertainties associated with the sampling (MCMC)

Challenges with MCMC walkers:

- ★ known caveats of random walkers:
- can get stuck in local maxima ⇒ not well adapted to sample multi-peaked distributions
- stochasticity ⇒ solution may vary with different starting points
- ★ Do not sample the whole parameter space
 ⇒ the marginal likelihood is difficult to evaluate!

MARGINAL LIKELIHOOD

$$p(\vec{O}|\mathcal{M}) = \int_{\theta} p(\vec{O}|\theta, \mathcal{M}) p(\vec{\theta}|\mathcal{M}) d\theta$$

integrate on the whole likelihood prior on θ parameter space

Uncertainties associated with the sampling (MCMC)

Particle filtering methods:

- ★ parallel MCMC chains that simultaneously sample the whole parameter space
- ★ less sensitive to starting values but requires large number of draw
- ★ marginal likelihood is easier to evaluate!
 ⇒ allows model comparison <u>assuming that prior probabilities</u> are equal

MARGINAL LIKELIHOOD

$$p(\vec{O}|\mathcal{M}) = \int_{\theta} p(\vec{O}|\theta, \mathcal{M}) p(\vec{\theta}|\mathcal{M}) d\theta$$

integrate on the whole likelihood prior on θ
parameter space

Sequential Monte Carlo (SMC)

Key points and some questions

★ Topological models add a layer of uncertainties with the <u>choice of the best</u> <u>configuration</u>

assuming that the prior probabilities of all models are equal

#1; Is it ok to assume that <u>all models are</u> <u>a priori equivalent</u>?

Should more complex models be favored as more likely to reproduce a complex ISM structure? (and how?)

Key points and some questions

★ Topological models add a layer of uncertainties with the <u>choice of the best</u> <u>configuration</u>

assuming that the prior probabilities of all models are equal

★ Particle filtering sampling methods are well adapted to sample multi-peaked distributions and evaluate easily the marginal likelihood.

#1; Is it ok to assume that <u>all models are</u> <u>a priori equivalent</u>?

Should more complex models be favored as more likely to reproduce a complex ISM structure? (and how?)

#2: How should we representent

multi-peaked distributions in which the

mean, median are not representative?

Smooth representations may be limited to interpret trends in samples, especially for incomplete samples

Key points and some questions

★ Topological models add a layer of uncertainties with the <u>choice of the best</u> <u>configuration</u>

assuming that the prior probabilities of all models are equal

- ★ Particle filtering sampling methods are well adapted to sample multi-peaked distributions and evaluate easily the marginal likelihood.
- ★ The posterior distribution reflects the knowledge associated with a given set of lines and their associated (measured) uncertainties assumed to be gaussian.

#1; Is it ok to assume that <u>all models are</u> <u>a priori equivalent</u>?

Should more complex models be favored as more likely to reproduce a complex ISM structure? (and how?)

#2: How should we representent

multi-peaked distributions in which the

mean, median are not representative?

Smooth representations may be limited to interpret trends in samples, especially for incomplete samples

#3: What is the impact of the <u>set of</u> <u>tracers</u> used as input?

In theory better to have as many as possible but require more complex models. Tracers not well understood may bias the solution.

#4: What is the impact <u>assuming fixed</u>

gaussian uncertainties for the input data?

Ideally, the fitting process should be included on-the-fly with a new fit at each draw in the MCMC (expensive)

Example: Representing the individual and global PDFs

Example: Representing the uncertainty on topology

Example: Representing the uncertainty on topology

Choice 2#: representing only the "best" models

17

Dust/CIB components separation Uncertainties in the components separation

Evaluating uncertainties for components separation

Erwan Allys - LPENS, Paris, with C. Auclair, F. Boulanger, P. Richard

Colloque PCMI 2022 Paris, October 26^{th} 2022

Outline

1 Dust/CIB components separation

2 Uncertainties in the components separation

Dust/CIB components separation Uncertainties in the components separation Dust/CIB components separation Application to Herschel data

Dust/CIB components separation

• Herschel *spider* field at $250 \mu m$

 \rightarrow Thermal dust emission and Cosmic Infrared Background (CIB)

Dust/CIB components separation

• Scientific objective

- Mixture of components in observations
 - $\rightarrow d = s + k$ with d data, s dust, k CIB
- ▶ Use non-Gaussian information to separate them
 - \rightarrow close SED of thermal dust and CIB
 - \rightarrow Work at a single frequency (to begin with)
- Realistic simulations hard to find
 - \Rightarrow Work only from observational data

\rightarrow From observational statistics of k, recover statistics of sAuclair et al, in prep.

Components separation algorithm

• Application on Herschel *spider* field

- ▶ Clean k_0 CIB observation from *Lockman hole* field
 - \rightarrow estimation of the statistics of k
- Deformation of d to an estimate \tilde{s} of s (Regaldo+ 2021, Delouis+ 2022)
 - \rightarrow gradient descent in pixel space
 - \rightarrow several constraints from scattering statistics
 - \rightarrow happy to discuss more :)
- We obtain a \tilde{s} map, on which we evaluate the statistics

 \rightarrow Focus on statistics of s (not deterministic at small scales) \rightarrow Only d and k_0 are used in the process ! Dust/CIB components separation Uncertainties in the components separation Dust/CIB components separation Application to Herschel data

• Input data and separated components

Erwan Allys Evaluating uncertainties for components separa

Outline

- Dust/CIB components separation
- 2 Uncertainties in the components separation

Evaluating uncertainties

• Difficulties for evaluating uncertainties...

- Only a few input maps
- Highly non-linear separation

$\rightarrow\,$ First approach with a validation on mock data

Validation pipeline on mock data

• Constructing a set of mock data

- ▶ Perform a separation with known dust
- Surrogate dust from observations
 - \rightarrow same field of view, gas from HI data
 - \rightarrow avoid CIB contamination
 - \rightarrow denoising and map construction with ROHSA (Marchal+ 2019)
 - \rightarrow lower resolution \Rightarrow smaller patch
- ▶ CIB from *Lockman Hole* can be cut in several patches

Dust/CIB components separation Uncertainties in the components separation Validation on mock data pipeline Results from mock data

Validation pipeline on mock data

• Different types of errors

- Same statistics for k and k_0
 - \rightarrow algorithm error
- Statistical variance for k and k_0
 - \rightarrow model error

$\rightarrow\,$ Model error dominates on all scales

Validation on mock data pipeline Results from mock data

Results from mock data

• Power spectrum

Results from mock data

• Beyond power spectrum (increments pdf, pixels pdf, RWST)

 \rightarrow Correct statistics reproduced on all but smallest scales

Estimating uncertainties with real data

- Uncertainties: mock data are not real data...
 - We have only one sample of the CIB
 - \rightarrow no direct variance assessment
 - Mock data are with smaller patches
 - \rightarrow how to extrapolate to larger patches ?
 - ▶ The HI map is not a dust map
 - \rightarrow how to extrapolate to an unknown component ?
- We can extrapolate from the application on mock data \rightarrow What's the better way to do so ?
- What other method could we use ?

Estimating uncertainties with real data

- Uncertainties: mock data are not real data...
 - We have only one sample of the CIB
 - \rightarrow no direct variance assessment
 - Mock data are with smaller patches
 - \rightarrow how to extrapolate to larger patches ?
 - ▶ The HI map is not a dust map
 - \rightarrow how to extrapolate to an unknown component ?
- We can extrapolate from the application on mock data \rightarrow What's the better way to do so ?
- What other method could we use ?

Thanks for your attention !

– and happy to discuss components separation :) –

- Should we try to account for every effects, from the instrumental biases to the physics of our target, as well as the different contaminations, in one big single model?
- What is the meaning and potential usefulness of a good fit with a wrong model?
- How to validate a simulation that can not be fit to some observations?
- Have we been too pessimistic? Isn't there something called "the law of large numbers" that will guarantee that all our uncertainties average out?

(2) Empirical Evidence

Third Session: How to Publish Uncertainties & Allow Future Studies to Use Them Consistently

Plotting distributions

Most of the time we have access to a sample of points

• Show approximations of the distributions (histograms, kde)

Plotting distributions

Most of the time we have access to a sample of points

More difficult with increasing dimensions: corner (or triangle) plots

Quoting errors

Most of the time we have access to a sample of points

Summarising the whole distribution with a "central value" and an "uncertainty" often called point estimates

- mean ± standard deviation
- median ± interpercentile range (often p16 and p84 to match the 1 sigma interval for a 1d gaussian distribution)
- For higher dimensions the uncertainty can be summarised in a covariance matrix (d x d but only need to store d(d-1)/2 values)

Plotting errors

Most of the time we have access to a sample of points

Sometimes we don't have a sample of points

- "Black box" optimisers
- If they give uncertainties usually computed from local curvature around "maximum likelihood" or "minimum chi2" and assume gaussian errors => covariance matrix.
- If no uncertainty given you can try bootstrapping
 - 1/ create many (10⁴⁻⁵) new datasets by resampling with replacement
 - 2/ compute the value you want for each of these resampled dataset
 - 3/ you now have a sample of values you can deal with as in the previous slides

Transmitting this information What to send ?

- send the samples themselves
- choose a family of analytic distributions, compute the associated parameters and send those
- send the parametric description (histogram or kde)
- send the "point estimates" (possibly with the covariance matrix)
- for bayesian inference: send the dataset + likelihood function + prior definitions and let the others resample as many points as they want

Transmitting this information How to send it ?

- A table in your manuscript
- An ASCII table
- A structured format json, pandas, python pickle (beware of strange formats they don't live forever)
- for larger datasets: binary formats (hdf5, netCDF, fits, etc)
 - Some formats are trying to become standards eg arviz InferenceData structure for samples from a distribution
- Maybe one day: the python scripts that create the figures, tables of your manuscript from the data. Some editors already ask for the datasets

Third Session Wrap-Up: What Can We Be Certain About?

- Would it be profitable to the community to set a standard in the way uncertainties are estimated and published?
- Should we create a network of people interested in helping each other to achieve this task?
- Who should centralize the uncertainties of all published studies (A&A, the CDS, *etc.*)?
- \bullet Should we declare October 26 $\pm\,1$ "Uncertainty Day" at UNESCO?