
TeachingDustModelstoaMachine
Jean Tedros & Frédéric Galliano (Département d’Astrophysique, CEA Saclay, France)

Motivations: Computing Fast Dust Models
Computing grain spectra – Computing the emitted IR spectrum of
an interstellar dust mixture exposed to an arbitrary radiation field
requires (e.g. Galliano, 2022):

1. Computing the temperature distribution of the smallest grains,
which are out of equilibrium with the radiation field (intensive);

2. Computing the emission of large grains, which are at thermal
equilibrium (fast);

3. Integrating the spectra of every individual grain size bin over the
size distribution (fast).

Problematic applications – Some wide-spread practical applications
require computing a large number of dust spectra:
SED fitting (especially Bayesian inference; e.g. Galliano, 2018) re-

quires computing:
Nsources︸ ︷︷ ︸
arbitrary

×Nparameters︸ ︷︷ ︸
3 to 15

× NMCMC︸ ︷︷ ︸
104 to 106

×NPDF︸ ︷︷ ︸
100

' 3× 106 to 1012.

Radiative transfer models also require to compute one dust spec-
trum per cell for each iteration until equilibrium is reached (e.g.
Nersesian et al., 2020):

Ncells︸ ︷︷ ︸
1 000 000

×Niterations︸ ︷︷ ︸
10

' 107.

The Dust Model Grid Used for Training

We have generated a large grid
of dust emission spectra, us-
ing:

the THEMIS model
(Jones et al., 2017);
heated by a radiation
field modeled using the
stellar population syn-
thesis code BPASS (El-
dridge et al., 2017, right
panel). Ionizing
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Radiation field:
Initial metallicity, Z =
0.04.
Salpeter IMF.
Scales with U , the
starlight intensity be-
tween λ = 0.0912 µm
and 8 µm (U = 1 ⇔
2.2×10−5 W/m2; panel
a).
Varies as a function of,
τ , the time since the
start of the star forma-
tion burst (panel b).

Dust model:
Vary the minimum
size, amin (panel c).
Represent the emission
per dust mass, per U .
Take log quantities for
the machine-learning
training.

Grid size:
481 wavelengths.
91 U.
51 τ .
51 amin.

⇒ 236 691 dust spectra.
This is our training data set

Our Neural Network Architecture & Training
Training data set:

We use our whole model grid as a training data set (236 691
spectra).
Testing is performed by recomputing 8 000 new models at ran-
dom parameter values.

Neural Network (NN) – The machine-learning training was performed
using the Keras library (Chollet, 2015). Here is our NN architecture:
1 input layer of 3 neurons (number of parameters, U , τ and amin);
8 hidden layers of 256 neurons, chosen by minimizing the loss;
1 output layer of 481 neurons (size of the wavelength grid).

Accuracy & Efficiency of the NN Model
Goodness metric – To estimate the quality of the model produced by
the NN, we use the Median Absolute Percentage Error (MAPE):

MAPE(y, ŷ) = 100×
N∑

i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ ,
where the yi are the log of the emissivity at each one of the N = 481
wavelengths. Below, we compare the MAPE when using our NN and
when performing linear interpolation within our model grid. Our NN
performs better than linear interpolation. It is most of the time more
accurate than a few percents.
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Computing speed – The following table compares the accuracy and
running time for the 8 000 spectra of our testing grid.

Method Mean MAPE CPU time
Full computation 0 % 200 hours
Linear interpolation 4.7 % 8 minutes
NN 2.6 % 1 second

Open-Source Python & Fortran Modules
The following tools, implementing this model are freely available at:
https://github.com/jctdrs/SwING_external/. This repository mainly
contains the following.

A Python program that computes the emission spectrum, quasi-
instantaneously, on the command line.
This Python program can also be called as a Python module.
A Fortran module is also provided.
Several options can be used: (i) running the NN to estimate the
dust emission; (ii) running the NN to estimate the photometry
in 70 broadband filters (Spitzer, AKARI, WISE, Herschel, Planck,
etc.); (iii) running the NN backward to estimate the parameters
from the spectrum.
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