

Comparing ISM observations and simulations beyond gaussian features

Supervised by:

Physics and Chemistry of the Interstellar Medium École Normale Supérieure, Paris, France 24/10/2022

LABORATOIRE DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE

PERSEUS – Herschel Gould Belt Survey 2010

BSVSS

Pablo RICHARD

PhD student - LPENS - Paris

Main collaborators: F. LEVRIER & E. ALLYS P. LESAFFRE & A. GUSDORF

NTRODUCTION

THE ISM COMPLEXITY

Magnetic field? Gravity? Injection, turbulence, dissipation? Stellar feedback? Shocks? Chemistry?

 $\bullet \bullet \bullet$

OBSERVATIONS

MODEL

How far?

SIMULATIONS

WHY IS NONLINEARITY A HURDLE?

Nonlinear dynamics

Coupling between scales

Coherent non-Gaussian structures

WHY IS NONLINEARITY A HURDLE?

Fourier modulus

Strong degeneracies

Coherent

Ok but what if we use nevertheless gaussian stats.?

Gaussian

THE ISN COMPLEXITY

Magnetic field? Gravity? Injection, turbulence, dissipation? **Stellar feedback? Shocks? Chemistry?**

 $\bullet \bullet \bullet$

OBSERVATIONS

MODEL

How far?

DIFFICULT

SIMULATIONS

WHERE IS COHERENT INFORMATION? LIMITS OF THE FOURIER MODULUS

- $\left| \hat{I}(\vec{k}) \right| = \left\| \hat{I} \cdot \delta_{\vec{k}} \right\|_{2} = \left\| I \star e^{i\vec{k} \cdot \vec{x}} \right\|_{2}$
- What is lost during this operation?
 - The **phase**!

- coherent structure \implies constructive interferences
 - \implies phase coherence between scales
 - \implies scale interactions

WHERE IS COHERENT INFORMATION? LIMITS OF THE FOURIER MODULUS

Coherent

Fourier modulus

Gaussian

WHERE IS COHERENT INFORMATION? LIMITS OF THE FOURIER MODULUS

Coherent phase

Gaussian phase

Fourier modulus

WHY IS NONLINEARITY A HURDLE?

Nonlinear dynamics

Coupling between scales

Coherent non-Gaussian structures

HOW TO CATCH SCALE INTERACTIONS?

one scale \vec{k} only $|\hat{I}(\vec{k})| = ||\hat{I} \cdot \delta_{\vec{k}}||_2 = ||I \star e^{i\vec{k} \cdot \vec{x}}||_2$

two scales $\vec{k}_1 \neq \vec{k}_2$ $\|I \star e^{i\vec{k}_1 \cdot \vec{x}} \star e^{i\vec{k}_2 \cdot \vec{x}}\|_2 \longrightarrow 0$ just like $\langle \cos(x), \cos(2x) \rangle$

Idea: apply a nonlinearity

WHY IS NONLINEARITY A HURDLE?

Nonlinear dynamics

Nonlinear summary stats.

Coupling between scales

Coherent non-Gaussian structures

HOW TO CATCH SCALE INTERACTIONS? THE WAVELET SCATTERING TRANSFORM (Mallat+, 2010+)

Apply a **nonlinearity**

Stability & sparsity

|I|

 $I\star$

$$\begin{aligned} \left\| \mathbf{x} e^{i\vec{k}_{1}\cdot\vec{x}} \star e^{i\vec{k}_{2}\cdot\vec{x}} \right\|_{2} \\ \left\| \mathbf{x} e^{i\vec{k}_{1}\cdot\vec{x}} \right\| \star e^{i\vec{k}_{2}\cdot\vec{x}} \\ \left\| \mathbf{x} e^{i\vec{k}_{1}\cdot\vec{x}} \right\| \star e^{i\vec{k}_{2}\cdot\vec{x}} \\ \left\| \mathbf{x} \psi_{j_{1},\theta_{1}} \right\| \star \psi_{j_{2},\theta_{2}} \\ \left\| \mathbf{x} \psi_{j_{2},\theta_{2}} \right\|_{1} \\ \left\| \mathbf{x} \psi_{j_{1},\theta_{1}} \right\| \star \psi_{j_{2},\theta_{2}} \\ \left\| \mathbf{x} \psi_{j_{2},\theta_{2}} \right\| \star \psi_{j_{2},\theta_{2}} \\ \left\| \mathbf{y} \psi_{j_$$

HOW TO CATCH SCALE INTERACTIONS? THE REDUCED WAVELET SCATTERING TRANSFORM (Allys+, 2019)

 $\left\| I \star \psi_{j_1,\theta_1} \right\| \star \psi_{j_2,\theta_2} \right\|_{1}$

$\log_2 \left[S_2(j_1, \theta_1, j_2, \theta_2) \right] = \hat{S}_2^{iso1}(j_1, j_2) + \hat{S}_2^{iso2}(j_1, j_2) \cdot \cos \left[2(\theta_2 - \theta_1) \right] + \dots$

Fully isotropic scale interaction

dependance on scales alignment
basically a filament detector

OBSERVATIONAL DATA Herschel: PACS detector at 160 µm, ~13" res., + estimated col. density

TAURUS from Herschel Gould Belt Survey

from Herschel Gould Belt Survey

Panel n°1/1 -5.0 mpc/pix 6.4 arcsec/pix 1580 x 1410 pix

MJy/sr

100

50

CAN WE RETRIEVE THIS DIFFUSE/ACTIVE SIGNATURE?

Active

Perseus Orion B Aquila Serpens Chamaeleon I Taurus Polaris Flare

Diffuse

DENSE SIMULATION DATA

Orion Cloud – Ntormousi & Hennebelle 2019 – Galactica database | gravitational collapse & star form. | AMR

MHD GALACTICA SIMULATION

Snapshot n°497 Projection: x axis 4096 x 4096 pix.

DIFFUSE SIMULATION DATA P. Lesaffre – MHD Diffuse ISM | strongly mag. | PBC | dimensionless

1200 - 1150 1100 1050 1000 950 900

DIFFUSE MEDIUM SIM.

Snapshot n°1 1024 x 1024 pix.

Mach number {1, 4, 16} Initial cond.: {OT vortex, ABC flows, ABC.B0 hydro} Large scale anisotropy of B

DIFFUSE MEDIUM SIM.

Snapshot n°19 1024 x 1024 pix.

COMPARISON WITH SIMULATIONS

Perseus Orion B Aquila Serpens Chamaeleon I Taurus Polaris Flare Sim OriB MHD Sim OriB Hydro high res Sim OriB MHD high B Sim diff ABC Ma4 Sim diff ABC Ma1 Sim diff ABC.B0 Ma1 Sim diff OT Ma1

COMPARISON WITH SIMULATIONS

Pure hydro (\blacklozenge) \neq MHD (\bigstar) and MHD high B (\bigstar)

Perseus Orion B Aquila Serpens Chamaeleon I Taurus Polaris Flare Sim OriB MHD Sim OriB Hydro high res Sim OriB MHD high B Sim diff ABC Ma4 Sim diff ABC Ma1 Sim diff ABC.B0 Ma1 Sim diff OT Ma1

COMPARISON WITH SIMULATIONS

Pure hydro Orion B SIM

MHD Orion B SIM

Perseus
Orion B
Aquila
Serpens
Chamaeleon I
Taurus
Polaris Flare
Sim OriB MHD
Sim OriB Hydro high res
Sim OriB MHD high B

ANALYSIS OF THE STATS DISPERSION

Orion B SIMS Aquila Polaris Flare

Dissimilarity of Power Spectrum (dim. 254)

Dissimilarity of S2Iso1 (dim. 15)

EXAMPLE OF TEXTURE MAPPING

structure sparsity $s_{21} \equiv S_2 / S_1$

Cheng & Ménard, 2021 Sea temperature fields

CONCLUSION

- The nonlinear ISM dynamics generates nonGaussian structures
 the Power Spectrum is far to fully describe them (degeneracies)
- The RWST are powerful **non-Gaussian summary** statistics
 - breaks power spectrum degeneracies
 - stability & reduces drastically the dimension (≤ 100 coefficients)
- The dispersion of the stats. is of importance to build a comparison
 - simple unsupervised techniques (PCA) already show interesting structures
 - identify a few numbers of relevant & interpretable features for low dim mapping (in progress)

Pablo RICHARD - 24/10/2022

