New insights for O₂ origin in comet 67P

A. Luspay Kuti¹, O. Mousis², **F. Pauzat**³, O. Ozgurel⁴, Y. Ellinger⁵, J. Lunine⁶, S. Fuselier⁷, K. Mandt¹, K. Trattner⁸ and S. Petrinec⁹

¹ Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA ³LCT, Sorbonne Université, CNRS, Paris, France

⁵ Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, Rennes, France ⁷ Department of Physics and Astronomy, University of Texas, San Antonio, TX, USA ⁹Lockheed Martin Advanced Technology Center, Palo Alto, CA, USA

² LAM, Aix Marseille Université, CNRS, CNES, Marseille, France ⁴ CEED, Department of Geosciences, University of Oslo, Oslo, Norway ⁶ Department of Astronomy, Cornell University, Ithaca, NY, USA ⁸LASP, University of Colorado Boulder, Boulder, CO, USA

Scenarios for a sensitive determination

One of the biggest surprises of the Rosetta mission was the detection of O_2 in the coma of 67P/Churyumov–Gerasimenko in remarkably high abundances [Bieler, A. et al., 2015, Nature 526, 678–681]. For the last years the consensus was that the source and release of cometary O₂ were linked to H₂O at all times [Luspay-Kuti, A. et al., 2018, Space Sci. Rev. 214, 1–24]. A deeper analysis of the ROSINA observations, in particular along time and position of the comet, gave a previously unrecognized change in the correlations of O_2 with H_2O , CO_2 and CO that contradicts this prevailing notion [Altwegg, K. et al., 2020, MNRAS 498, 5855–5862; Luspay-Kuti, A. et al., 2019, A&A 630, A3]. The findings can be explained only by the presence of two distinct reservoirs of O_2 .

primordial reservoir.

(arbitrary scales).

The insets show possible calculated arrangements of the H₂O ice molecules on a microscopic scale based on a first-principle DFT periodic model (see below). The red dashed circles indicate the locations of missing H_2O where O_2 can be incorporated and stabilized.

[^ mnutational	01/2	llistione	A t		tron	nina	WOtor	
GUIIUULALIUIA	GVO	IUALIUIIS					VValci	
				2				

Process	Void of n H ₂ O	Void position] n	Trapped nolecule	E _{stabilization} (eV)	
Adsorption	0	_	O_2	triplet	0.12	
Inclusion	1	any	O_2	triplet	-0.06	
Inclusion (a)	2	2 adjacent bi-layers	O_2	triplet	0.20	
Inclusion (b)	2	same bi-layer	O_2	triplet	0.24	
Inclusion (c)	4	2 adjacent bi-layers	O_2	triplet	0.27	
Inclusion (d)	4	2 adjacent bi-layers	\overline{O}_2	triplet ×2	0.35	

Solid model

Calculations done with the Vienna ab initio simulation package (VASP) (Kresse, G., & Hafner, J. 1993, PhRvB, 48, 13115 ; 1994, PhRvB, 49, 14251), using the hybrid functional (PBE) + 50% HF exchange) with Grimme correction (D2) included for dispersion effects (Perdew, J. P. et al. 1996, PhRvL, 77, 3865). Core electrons are frozen and replaced by pseudo-potentials generated by the plane augmented wave method (PAW).

Inclusion (e)

Scenario: Two mechanisms imbricated

0.43

a) Since H_2O sublimation beyond ~3.3 au is low, the trapped O_2 may be bound to the H_2O structure and unable to leave until the next onset of H_2O sublimation. In that case, the O_2 measured in the coma is O₂ released from depth together with CO and CO₂. This O₂ coming from the deeper nucleus layers may either leave the nucleus or keep accumulating in the near-surface H₂O ice (away from the Sun) as long as there is O₂ release happening at depth and there are enough cavities in the near-surface H_2O ice to trap it.

b) As 67P makes its way back toward the next pre-perihelion equinox, H_2O sublimation gradually turns on and the trapped O_2 is released together with the sublimating H_2O . This release of accumulated O_2 from the secondary, water-trapped reservoir closer to the surface by the sublimation of H_2O ice explains the surprisingly high O_2 relative abundances measured early in the mission. While O_2 at depth continues to be released along with CO₂ and CO, the accumulated O₂ source in H₂O ice is significantly stronger; hence the strong correlation between O_2 and H_2O up until the H_2O sublimation begins to turns off.

These new insights imply that O₂ must have been incorporated into the nucleus in a solid and distinct phase during accretion in significantly lower abundances than previously assumed. Further analysis of O_2 correlations with other minor volatile species may help to finally unravel the origin of O_2 in 67P.