Diffusion-advection effects in Photo-dissociation regions

B. Aleena¹, V. Ossenkopf-Okada¹, and M. Röllig¹ ¹ Institute of Physics I, University of Cologne, Germany, baby@ph1.uni-koeln.de

Problem

Molecular clouds are not static but species are transported through them by random motions. Quantifying this transport is essential for understanding the underlying physical conditions in a molecular cloud.

- ? How to evaluate the diffusion coefficient?
- ? What are the diffusion coefficient and coherence length of turbulent flows?

Dynamic effects in the chemistry

? Are there any observable effects?

Basic Concepts

Molecular diffusion(ϕ_{mol}): diffusion due to abundance gradients of different molecules, atoms, and ions in the molecular cloud **Turbulent diffusion**(ϕ_{tu}): diffusion due to the turbulent eddies.

Thermal diffusion($\phi_{\rm th}$): diffusion due to the non-uniform temperature of the cloud. Advection(ϕ_{adv}): flow of material due to a pressure gradient.

Model

1. We investigated the diffusion-advection effects in the **multi-fluid** gas of photondissociation regions (PDRs).

Fig.2: Spherical PDR model(left) and a simplified model depicting the diffusion and mass loss from the cloud(right).

* limits of the total diffusion coefficient: $10^{15} - 10^{22}$ cm² s⁻¹

* coherence length of turbulent flows, L: 5 - 10% of the radius of the cloud.

* Diffusion increases the surface temperature compared to the non-diffusive case.

* For more results scan \Longrightarrow

Fig.3: Turbulent velocity as a function of distance from the surface of the cloud.

Chemistry is no longer a local problem!

* The H/H_2 ratio is changing as a function of the diffusion velocity, with knock-on effects for the

- 2. A turbulent mixing-length theory along with molecular and thermal diffusion is included in the KOSMA- τ PDR model.
 - * 61 different species, 816 reactions
 - * tested with multiple temperature, density distributions, and radiation fields
- 3. The KOSMA- τ PDR model solves the chemistry, level populations, and energy balance simultaneously in a spherical geometry.

Math box

Diffusion-advection rates,

whole PDR chemistry.

- Diffusion increases the abundance of H^+ , He^+ , OH^+ , CH^+ , and decreases that of He, CH, CO in the warm gas at intermediate optical depths.
- * The density profiles of C, C^+ , HCO, and HCO⁺ are shifted towards the cloud center.

Effects are visible in C, C⁺, C¹⁸O, CH⁺, CO, and HCO⁺

$$\phi_{\rm tu} = K_{\rm tu} \frac{\partial n}{\partial x} \quad K_{\rm tu} = V_{\rm turb} L \text{ (shown in fig[3])}$$

$$\phi_{\rm mol} = K_{\rm mol} \frac{\partial n}{\partial x} \qquad K_{\rm mol} = \sqrt{\frac{5kT_{\rm i}}{3\mu}} \frac{1}{\sigma N}$$

$$\phi_{\rm th} = \frac{K_{\rm th}}{T} \frac{\partial T}{\partial x} \qquad K_{\rm th} = K_{\rm mol} k_T$$

where, μ : average molecular weight, σ : crosssection, N: total number density, k_T : thermal diffusion factor

This research is carried out within the Collaborative Research Centre 956, sub-project C01, funded by the Deutsche Forschungsgemeinschaft (DFG) – project ID 184018867.

Conclusion

- * The limits of the total diffusion coefficients vary between $10^{15} 10^{22}$ cm² s⁻¹
- * Coherence length of turbulent flows should vary between 5 10% of the radius of the cloud to have an observable effect.
- * The line intensities from C, C⁺, CH⁺, CO, and HCO⁺ show significant differences for different diffusion-advection scenarios.
- * C, CO, and other organic molecules can be used as a probe to understand non-stationary chemistry effects measuring changes in the PDR stratification from the diffusion and advection of gas.