VUV photodissociation of cationic alkylated PAHs and water-PAH complexes and formation of pentagonal carbon rings

A. Marciniak^{1,2}, S. Zamith², G. Mulas³, H. Leboucher⁴, A. Simon⁴, S. Rodriguez Castillo^{1,5},
A. Giuliani^{6,7}, L. Nahon⁶ A. Bonnamy¹ and C. Joblin¹

¹IRAP, Université de Toulouse, CNRS, CNES, France
²LCAR/FERMI, Université de Toulouse, CNRS, France
³INAF Osservatorio Astronomico di Cagliari, I-09047 Selargius (CA), Italy
⁴LCPQ/FERMI, Université de Toulouse, CNRS, France
⁵European Space Research & Technology Centre, Postbus, 299 2200 AG Noordwijk, The Netherlands
⁶Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
⁷INRAE, UAR1008, Transform Department, Rue de la Géraudière, BP 71627, 44316 Nantes, France

VUV photodissociation of cationic alkylated PAHs

Signature of aliphatic PAHs in photodissociation regions

Good candidates for the 3.4 μ m band:

- Alkylated PAHs : methy-, ethyl-PAH,... (e.g. methylCoronene)
- Superhydrogenated PAHs: H_n-PAH (e.g. H₆Coronene)

Signature of aliphatic PAHs in photodissociation regions

Principle of the study

PIRENEA

(Piège à lons pour la Recherche et l'Etude de Nouvelles Espèces Astrochimiques)

Collisionless and cold environment: 10⁻¹¹ mbar, 30 K

Studied PAH⁺ and PAH⁺ derivatives

Alkylated PAH → A. Marciniak, et al. A&A 642, A42 (2021)
Pyrene isomers → V. Meloottayil, et al., J. Chem. Phys. A, 126, p.5632 (2022)
Super-hydrogenated coronene → A. Marciniak, et al. in prep.

Alkylated PAH → A. Marciniak, et al. A&A 642, A42 (2021)

Pyrene isomers → V. Meloottayil, et al., J. Chem. Phys. A, 126, p.5632 (2022) Super-hydrogenated coronene → A. Marciniak, et al. in prep.

Alkylated Coronene⁺

Alkylated PAH → A. Marciniak, et al. A&A 642, A42 (2021)

Pyrene isomers → V. Meloottayil, et al., J. Chem. Phys. A, 126, p.5632 (2022) Super-hydrogenated coronene → A. Marciniak, et al. in prep.

Mass Spectra as a function of the VUV Irradiation time

Mass Spectra as a function of the VUV Irradiation time

Mass Spectra as a function of the VUV Irradiation time

Kinetics results

Can we retrieve the dissociation pathway of the species ?

Fitting procedure

Fitting procedure

k are in $\times 10^{-3} s^{-1}$ (scalable with the VUV flux)

Simplified fragmentation paths : bare Cor⁺ vs. alkylated Cor⁺

Alexandre MARCINIAK - PCMI 2022 - Paris

PAH photostability all along the VUV irradiation

PAH photostability all along the VUV irradiation

PAH photostability all along the VUV irradiation

Alkylated Pyrene⁺

Alkylated PAH → A. Marciniak, et al. A&A 642, A42 (2021)

Pyrene isomers → V. Meloottayil, et al., J. Chem. Phys. A, 126, p.5632 (2022) Super-hydrogenated coronene → A. Marciniak, et al. in prep.

Simplified fragmentation maps : bare Pyr⁺ vs. alkylated Pyr⁺

Mainly H loss

Simplified fragmentation maps : bare Pyr⁺ vs. alkylated Pyr⁺

Simplified fragmentation maps : bare Pyr⁺ vs. alkylated Pyr⁺

- ✓ Carriers of the 3.4 µm band (alkylated or H-shifted PAHs) photofragments efficiently
- ✓ Common species are produced during the VUV photo-processing of alkylated PAHs
- Pentagonal ring formation stabilizes the structure as much (and even more) than the bare cationic PAH

Acknowledgments

V. Rao Mundlapati, V. Meloottayil, H. Sabbah, S. Wiersma & C. Joblin

Support : A. Bonnamy, L. Nogues, O. Coeur-Joly, D. Murat

S. Zamith, J.-M. L'Hermite, A. Nair, P. Moretto-Capelle

L. Nahon, A. Giuliani

M. Vilas-Varela, D. Peña

Laboratoire de Chimie et Physique Quantiques

A. Simon, M. Rapacioli, H. Leboucher, F. Spiegelman

G. Mulas

Alexandre MARCINIAK - PCMI 2022 - Paris

Thanks for your attention !

<u>Annexes</u>

Relaxation of a photoexcited PAH in PDRs

PIRENEA (details + calibration)

(Piège à lons pour la Recherche et l'Etude de Nouvelles Espèces Astrochimiques)

Alexandre MARCINIAK - PCMI 2022 - Paris

Fitting procedure

Full fragmentation map of methyl- and ethyl- coronene

TD-DFT calculations of the photoabsorption cross sections (G. Mulas)

 $\overline{k_{abs}} = \overline{\sigma_{abs}(10.5 \text{ eV})} \times (VUV Flux)$

What about the VUV stability of H_n -PAH⁺?

