

European Research Council Established by the European Commission

CH⁺(1-0) in a z~2.8 galaxy group: probe of

multi-phasic turbulent gas reservoirs

OAN **OBSERVATORIO ASTRONÓMICO** NACIONAL

Doug Perrine

Alba Vidal-García, Edith Falgarone, Fabrizio Arrigoni Battaia, Benjamin Godard, Rob J. Ivison, Martin A. Zwaan, Cynthia Herrera, David Frayer, Paola Andreani, Quong Li, Raphaël Gavazzi, Edwin Bergin, Fabian Walter, Alain Omont

Large interaction regions: signposts of infall

Ceverino+2010, Gabor&Bournaud 2013, 2014

Growth of galaxies in simulations → accretion of gas Feedback from AGN and SF → ejection of matter Outflows observed, inflows elusive (Dekel+2009)

Observation of **accretion redshifted absorption** lines

CH⁺ profile of 2 local starbursts

M82

Chandra, HST, Spitzer

SFR~9.8 M_{\odot}/yr

Galactic absorption of CH⁺ and HI:
➢ Similar velocity coverage ~ 15km/s

Inverse P Cygni profile in M82:

HF Herschel/HIFI Monje (priv. comm.)

CO(2-1) IRAM-PdBI Weiss+2010

CII Herschel/HIFI Loenen+2010

- Redshifted absorption: inflow
- Emission at same velocity as SiO in shocks (García-Burillo+2001)

(Vidal-García+in prep.)

K-band, H₂, Paα Marconi+2000

SFR~ $0.4 \text{ M}_{\odot}/\text{yr}$

- ➤ Nuclear HI absorption (Ott+2001)
- > HF inflow rate ~ a few M_{\odot}/yr (Monje+2013)
- Similar shapes CH⁺ and HI absorption profiles

(Vidal-García+in prep.)

Why CH⁺? Most fragile but precious tracer

- Highly endothermic formation: $E_{form} \sim 0.5 eV \implies$ supra-thermal energy needed
- Highly reactive \implies short lifetime (~1 year at n_{CNM}) \implies **<u>observed where it forms</u>**
- Enhanced by UV photons instead of photodissociated
- High dipole moment \longrightarrow J=1-0 transition high ρ_{crit} :
 - ➤ Absorption line: diffuse gas ($n_{\rm H} < 10^3 \, {\rm cm}^{-3}$)
 ➤ Emission line: high density gas (shocks and PDRs, $n_{\rm H} > 10^4 \, {\rm cm}^{-3}$)

Tracer of turbulent dissipation Counter of molecules **formed** in absorption beam

CH⁺(1-0) in high-z lensed starburst galaxies

Falgarone+2017, V-G+ in prep.

▶16/18 starburst galaxies observed in absorption CH⁺(1-0) with ALMA: diffuse phase and starburst phase coeval

SMM J02399-0136 galaxy group

at z=2.8 and ALMA dust continuum contours

<u>Components</u> (Ivison+1998) :

- Starburst galaxy L2SW
- **AGN** L1
- L1N and L2 visible in UV, undetected in the FIR

Properties:

- $L_{bol} = 1.2 \times 10^{13} L_{\odot}$
- SFR (L2SW) = 870 M_{\odot}/yr
- μ~2 (Abell 370)
- $t_{dep} = M_{H2}/SFR = 66 \text{ Myr} (Frayer+2018)$

larcsec at $z=2.8 \sim 8$ kpc in source frame

CH⁺(1-0) ALMA observations

Redshifted absorption lines against the continuum sources:

inflowing low-density turbulent CGM

> mass ~ a few 10^{10} M_{\odot}, radius ~20 kpc inferred from the link: CH⁺ abundance - turbulent dissipation Broad emission lines FWHM ~1400 km/s at the position of the galaxies and in their environment

(Vidal-García+2021)

Keck/KCWI Ly α observations

Ly α integrated emission

Lyα nebula size >80 kpc

- ➤ Inner part: extremely large widths FWZI≥6000km/s, outflows~1000km/s
 - **Extended part**: lines **narrower and redshifted** by up to ~750km/s

Comparison of CH^+ and $Ly\alpha$ observations

Lensed radius of the CGM seen in CH⁺(1-0) absorption

 Projection agrees with Lyα nebula Vertical bands: velocity ranges of **redshifted** absorption of CH⁺

- towards L2SW and L1
- Lyα self-absorbed at same velocities

Multiphasic inflowing CGM

 Velocity of extended Lyα nebula same as CH⁺ absorption
 whole nebula inflowing

Ly α and CH⁺ emission co-spatial

Position-velocity cuts across Ly α nebula. High-velocity Ly α outflows: negative and positive contours White boxes: velocity, FWHM and position of CH⁺ emission lines

- > The CH⁺ emission velocities, FWHM and positions agree with those of the Ly α wings
- Reminder: CH⁺ emission traces UV irradiated shocks (Godard+2019, Lehmann+2021, 2022)

Shock contribution to Lya emission

CH^{+} and high-velocity $Ly\alpha$ emission

Smoothed moment-0 map integrated over [500, 1500] km/s superposed to the Ly α emission integrated over [1000,1500] km/s

> CH⁺ emission at edges of high-velocity Ly α contours

kpc-scale shocks at the interface outflows and inflowing CGM

Shocks at interface between inflow and outflows

Spatial distribution of CH⁺ emission structures and high-velocity Ly α emissions \longrightarrow kpc scale shocks (average linewidth ~1400 km/s) located at interface of AGN- and starburst-driven outflows (~1000 km/s) with inflowing (~ 400 km/s) CGM

In shocks, post-shocked gas thermalizes at T~
$$5 \times 10^7 \left(\frac{v_{shock}}{1400 km/s}\right)^2$$
K:

➡ no molecules

 \longrightarrow CH⁺ linewidth = velocity dispersion of low-velocity (~20 km/s) molecular shocks (LVMS) (Godard+2019)

→ multiphasic turbulent cascade

Shocks up to ~ 20 kpc from the galaxies

CH⁺ and H₂ lines from UV-irradiated shock models

Intensity of CH⁺(1-0) line computed with UV-Irradiated shock models (Lehmann+2022) as a function of pre-shock density and shock velocity.

Intensity ratios of the pure-rotational S(4), S(5) and rovibrational S(0), S(1) H₂ lines to that of CH⁺(1-0).

- ➤ At least x300 brighter than CH⁺(1-0)
- Measurement of radiative losses of kinetic energy in CGM shocks.

Observable with JWST

og (I H2 line/I CH⁺

Summary

- Redshifted CH⁺(1-0) absorption \implies inflow of diffuse molecular CGM at ~400 km/s
- Linewidth of CH⁺(1-0) absorption \implies radius ~20kpc and mass ~ 4x10¹⁰ M_{\odot} of turbulent CGM
- Co-spatiality and dynamic coupling of CH $^+(1-0)$ and Ly α :
- → Multiphasic CGM also inflowing towards the galaxies
- \implies Thermal cooling and shock contributions to Ly α emission
- Broad CH⁺(1-0) emission lines at edge of HV Ly α \implies scattered kpc-scale shocks at interface between inflow and outflows
- H₂ JWST measurement of radiative losses of kinetic energy in CGM shocks.

Starburst and AGN rotation in SMM J02399

ALMA CO(3–2) maps De-lensed SMG radius ~1-2 kpc The CGM reservoir few tens kpc

Even if the disk galaxies rotate, not clear that the CGM does

Why is CH+ absorption providing the CGM mass?

13 tentative emissions

Line integrated intensity in velocities
[-1350,250] km/s,
[-1000,-100] and [300,1000] km/s,
[0,1000] km/s
[500,1500] km/s

• Top: Positive σ_{m0} ; bottom: negative σ_{m0}

Not exhaustive search but:
(i) Line integrated intensity brighter than the rms
(ii) More extended than the synt. beam
(iii) localized within the 1/3-primary beam area where noise is minimum

13 tentative emissions

Name	Flux density mJy	σ^{a} mJy	$\frac{v_{\rm em}}{\rm km} {\rm s}^{-1}$	$\Delta v_{\rm em}^{\ b}$ km s ⁻¹	S/N ^c	d ^d arcsec	d ^e kpc	Ω^{f} arcsec ²
L1-em	0.12 ± 0.05	0.09	60 ± 240	1350 ± 440	2.8	1.1	3.9	0.34
L2SW-em	0.16 ± 0.12	0.12	40 ± 380	1280 ± 640	3.0	1.1	3.9	0.38
L1-ne	0.12 ± 0.11	0.17	530 ± 1200	2900±3100	2.7	1.7	5.7	0.46
L1-nw	0.31 ± 0.17	0.19	740 ± 290	1070±690	3.8	2.5	8.4	0.42
L1-sw1	0.29 ± 0.17	0.21	-600 ± 330	1160 ± 775	3.3	2.0	6.7	1.03
L1-sw2	0.18 ± 0.11	0.17	340 ± 720	2290 ± 1700	3.6	4.5	15.1	0.32
L2SW-ne1	0.16 ± 0.15	0.17	-620 ± 655	1420 ± 1540	2.5	3.8	12.8	0.44
L2SW-se1	0.24 ± 0.13	0.20	1270 ± 500	1820 ± 1210	3.6	3.2	10.8	0.54
Average	0.25	_	170 ± 540^{g}	1330±270 g	_		8.4	0.49
L1-s ^h	0.34 ± 0.24	0.20	1590±766	1275 ± 940	2.8	5.6	42.3	0.48
L2SW-n	0.27 ± 0.15	0.30	-285 ± 545	2860 ± 1315	3.4	5.4	25.4	1.85
L2SW-ne2	0.36 ± 0.13	0.30	825 ± 320	1700 ± 750	3.5	5.0	17.8	1.03
L2SW-se2	0.48 ± 0.15	0.40	805 ± 215	1390 ± 500	3.2	5.0	16.8	0.67
L2SW-se3	0.27 ± 0.11	0.25	655 ± 525	2510 ± 1270	3.8	5.3	17.8	1.00
Average ⁱ	0.25	_	412 ± 550^{g}	1450±390 g	_		28.8	0.75

Tentative detections of ALMA with CH⁺(1-0) IRAM 30-m observations

Sum of most plausible CH⁺ line fluxes, weighted by the IRAM-30m beam profile Line integrated flux of 1.4+/-0.4 Jy/km/s [-1000,1000]

IRAM 30-m tentative detection of CH⁺ (1-0) FWHM~1300km/s Line integrated flux of 3.5+/-1.4 Jy/km/s [-1000,1000] V₀=100 km/s

IRAM 30-m CH⁺(1-0) and Ly α spectrum

- Ly-α and IRAM 30m co-spatial spectrum in arbitrary units
- Velocity (FWZI ~3000 km/s) in both: supports shock contribution to $Ly\alpha$

Some examples of $CH^+(1-0)$ observed with ALMA

- Starburst galaxies at z~2-4
- µ~1.4-37.5
- Broad absorptions
- Broad emission lines

Lens model

- Sl_fit (Gavazzi+2011)
- Metropolis-Hastings algorithm (MCMC)
- Posterior probability distribution functions of set of parameters describing the mass profile of lens and luminosity profile of source
- Lens: singular isothermal ellipsoid mass distribution centered at cluster position obtained by Richard+2010.
- Background source: Sérsic profile of sources
- μ(L2SW)= 1.9+-0.1 r(L2SW)=1.8+-0.1kpc and μ(L1)= 1.7+-0.1 r(L1)=0.8+-0.1kpc

Statistical confirmation of structures in space and velocity

- Excess number of pixels with positive moment-0 values over those with negative values, normalized to the total number of pixels within a given radius as a function of radius
- The left panel displays this excess for all the connected structures above σ_{m0} (and weaker than $-\sigma_{m0}$)
- Right panel only the pixels in structures larger than one synthesized beam area: excess of positive structures above those negative statistically significant within 4.5 arcsec from the centre.
- Limit depends on the moment-0 map, [500, 1500] km/s remains significant up to 6 arcsec.
- Velocity interval where the CH+ emission is most intense

Energy and mass flow trail

• Are outflows able to sustain observed turbulence in such massive cold CGM over t_{dep}? YES

 L_{turb} in CGM (from CO and CH⁺ abs): ~5×10⁴³ erg/s

 L_{kin} of outflows (from L_{CH+} and shock models from Lehmann+2021): > 6.5×10⁴⁴ erg/s

 L_{kin} >10x larger than that needed to sustain CGM turbulence

• Are they able to compensate mass drain of cold CGM due to high SFR? NO

Drain by SFR $\sim 870 M_{\odot}/yr$ \dot{M}_{out} feeding $L_{turb} \sim 150 M_{\odot}/yr$

We need extra $\dot{M}_{in} \sim 720 M_{\odot}/yr$ to compensate SFR

Ly α and CH⁺ emission co-spatial

- Weighted sum of most plausible CH⁺ line fluxes in ALMA data
- Line integrated flux:
 - Over [-1000, 1000] km/s: 1.4 Jy.km/s
 - Over [-1900, 2200] km/s: 2.2 Jy.km/s

- Smoothed moment-0 maps superposed to the Lyα SB integrated over [-1200, -700] km/s and [1000,1500] km/s
- CH⁺ emission at edges of high-velocity contours

Tentative CH⁺ emission detections

- Smoothed moment-0 map (line integrated area) in the velocity range [500, 1500] km/s
- Average CH⁺ linewidth of 13 CH⁺ emitting structures ~ 1400 km/s, σ =300 km/s

Tentative CH⁺ emission detections

- Smoothed moment-0 maps superposed to the Ly α SB integrated over [-1200, -700] km/s and [1000,1500] km/s
- CH⁺ emission at edges of high-velocity contours

Ly α outflows: blue and red wings

- Contours of Ly α high-velocity emission integrated over [-1200, -700] km/s and [1000,1500] km/s
- Highly structured

2000

1000

0

Velocity (km/s)

Tentative CH⁺ emission detections

- Position-velocity cuts across Ly α nebula and space-velocity positions of CH⁺ emission (white boxes)
- The CH⁺ emission velocities coincide with those of the Lyα wings shock contribution (Lehmann+2021, 2022)

Starburst and diffuse-gas phase coevolution

Co-spatiality of CH⁺ emitting structures and HV Ly- α emission

- Weighted: it's the gaussian at the distance of the region divided by the sigma of the iram beam: exp(-D**2/2 x sigma**2) with sigma=HPBW/2.35
- (name of dE/dt=alpha*epsilon*v)
- Cleaning images: standard procedure. Flagged an antenna over a period of time for bad amplitude. Clean with tclean and hogbom algorithm. Deconvolve image masking galaxies with a contour selected in the continuum image.

Large interaction regions: signposts of infall

Ceverino+2010, Gabor&Bournaud 2013, 2014

Growth of galaxies in simulations: **accretion of gas** Feedback from AGN and SF: ejection of matter Outflows observed, **inflows elusive** (Dekel+2009)

Inverse P Cygni profile in a local starburst:

- Redshifted absorption: inflow
- Emission at same velocity as SiO in shocks (García-Burillo+2001)

Power of CH⁺ spectroscopy in high-redshift lensed starburst galaxies