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The angular momentum in star formation

Dense core Protostar + disk Stellar system

Outline
¢ Angular momentum is not
@ conserved during star formation.
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Most angular momentum is removed during star formation




Removal of angular momentum by magnetic fields

Magnetic braking Outflow
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« Angular momentum is not conserve
during star formation.

& Magnetic fields explain the loss of
AM.
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MagnetoHydroDynamics (MHD) in star formation

Ideal MHD = no magnetic dissipation, perfect coupling between the gas and the field. Outline
- Leads to a magnetic braking catastrophe. Hennebelle & Teyssier (2008)
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Ideal MHD / Non-ideal MHD B
TR TR - Magnetic braking weakened by the
..... " 'g ambipolar and Ohmic diffusions.
::’ 2 - Magnetic braking weakened or
L § strengthened with the Hall effect.
: = Non-ideal MHD necessary in
P star formation calculations.

Tomida et al. (2015)



Non-ldeal MHD - resistivities

Ohmic diffusion = decoupling of electrons and magnetic field

: . - Weaken / alter
Hall effect =decoupling of ions and magnetic field } macnetic brakin
Ambipolar diffusion = decoupling of neutrals and magnetic field 8 &

We know how to calculate / implement them.
BUT we need to calculate their strength = resistivities
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How do particles interact with each other ?
_ . ? ? :
lons. neutrals : Number ? Mass ? - } Chemistry
- Electrons: Number ? Recombination ?
- Grains: Size ? Number ? Mass ? Charge ? ——— Grain size-distribution

Outline

« Angular momentum is not conserved

during star formation.

< Magnetic fields explain the loss of AM.

< Ideal MHD prevents disk formation

> Non ideal MHD necessary.

¢ Magnetic resistivities are difficult to
calculate (chemistry, grains...).




Grain growth

Guillet et al. (2020) in a one-zone model
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Growth by coagulation

Grain size important for :
- Chemistry

lonization
Radiative transfer
Observations
Cooling

Planet formation

Grain coagulation
computationally expensive

o

3

<

3

K3
<

o

3

¢

Outline

Angular momentum is not conserved
during star formation.

Magnetic fields explain the loss of AM.

Ideal MHD prevents disk formation
> Non ideal MHD necessary.

Magnetic resistivities are difficult to
calculate (chemistry, grains...).

Grain growth is important but
expensive.



Grain coagulation

Smoluchowsky equation of coagulation
Smoluchowsky (1916)
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For every kernel K= f(grain)*g(gas)

Coagulation is a 1D process parametrized by x

Marchand et al. (2021)

After some clever =

manipulations

w = Cal(a, X, x).
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Grain quantity

Independent from
environment

Summary of relevant grain history

= Different environments alter the coagulation speed, not its outcome.
= The coagulated size-distribution is entirely determined by the initial distribution and x

How to use

Calculate x in your hydro simulation
Read the size-distribution from the table
Do physics

O

Pre-calculate the distributions as a function of x -

— Use Ishinisan (Marchand et al. 2021)

Mathematically exact
and self-consistent

Outline

Angular momentum is not conserved
during star formation.

Magnetic fields explain the loss of AM.

Ideal MHD prevents disk formation.
> Non ideal MHD necessary.

Magnetic resistivities are difficult to
calculate (chemistry, grains...).

Grain growth is important but
expensive.

Grain coagulation is a 1D process
parametrized by x.



Fractional mass X (p/nHmp)

Protostellar collapse : simulation

Marchand et al. (submitted)

Simulation with RAMSES (Teyssier 2002) : 3D with full non-ideal MHD effects.

Collapse of a dense core > disk formation.
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Size-distribution as a function of x

Starting size-distribution : MRN (Mathis et al. 1977)

Dust-to-gas mass ratio : 1%.

X calculated as a passive scalar in every cell.

Coagulation pre-calculated with Ishinisan.

Resistivities computed on-the-fly
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< Ideal MHD prevents disk formation.
> Non ideal MHD necessary.

% Magnetic resistivities are difficult to
calculate (chemistry, grains...).

< Grain growth is important but
expensive.

< Grain coagulation is a 1D process
parametrized by x.



Grain coagulatlon in protostellar collapse

Marchand et al. (submitted)
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% Magnetic resistivities are difficult to
calculate (chemistry, grains...).
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Grain coagulatlon impact on resistivities

Marchand et al. (submitted)

Outline
Resistivities as a function of density in simulations with/without coagulation & Angular momenturn is not conserved
le422 : : : : : : . : during star formation.
< Magnetic fields explain the loss of AM.
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le+18 | . > Sma“ gralns dlsappear’ < Magnetic resistivities are difficult to
N Larger, leSS numerous grains, calculate (chemistry, grains...).
le+16 | | > Lower grain surface area, % Grain growth isimportant but

expensive.

> Lower electron / ion absorption
{ > More “free” electrons / ions
Oty > Lower resistivities

< Grain coagulation is a 1D process
parametrized by x.
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< Grains grow rapidly in the disk :
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Grain coagulatlon impact on the disk

Marchand et al. (submitted)
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iy / Low resistivities > Higher magnetic braking
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calculate (chemistry, grains...).

Without coagulation :
High resistivities » Lower magnetic braking
> Larger disk

% Grain growth is important but
expensive.

12 % Grain coagulation is a 1D process

parametrized by x.

y (au)

% Grains grow rapidly in the disk :
>10 pm in <1000 years !

(O

log(p) (g cm™3)

% Magnetic resistivities highly impacted
by grain growth.

€ Lower resistivities due to growth,
- Stronger magnetic braking,
> Smaller disks !




Summary

% Angular momentum is not conserved during star formation.

% Magnetic fields explain the loss of AM.

% Ideal MHD prevents disk formation. > Non ideal MHD necessary.

% Magnetic resistivities are difficult to calculate (chemistry, grains...).
% Grain growth is important but expensive.

% Grain coagulation is a 1D process parametrized by x.

4% Grains grow rapidly in the disk : >10-100 pm in <1000 years !

% Magnetic resistivities highly impacted by grain growth.

% Lower resistivities due to grain growth > Stronger magnetic braking > Smaller disks !




Thank you !



Grain ionization

Marchand et al. (2021,2022) Inspired from Draine & Sutin (1987)

e Equilibrium of ion/electron flux on grains
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e Recombination/ionization equilibrium for ions
(with thermal ionization)
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4 equations
4 unknowns Y, g, n, n_

Get:

- lons number n, n

- Electrons number n_
- Every grain charge Z,
(arbitrary size-dist.)

~ 3-4 iterations of
Newton-Raphson



