Observing and modeling the extragalactic ISM

Outline

External galaxies

- Parameter space
- The ISM within the galaxy evolution and star formation contexts
- Some highlights
- Modeling strategies
 - Accounting for the ISM complexity & structure

(Wide topic, focus on spectroscopy and gas tracers)

Physical processes generally act on / originate from a wide range of spatial scales (e.g., SF)

Fig.: HI-H2 conversion and SF process as a function of spatial scales (Saintonge+ 2022).

Main challenges for extragalactic observations

- Reach small enough scales to disentangle ISM components or recover them through indirect, integrated, signatures
- Understand/generalize physical mechanisms in conditions \neq from MW

Physical processes generally act on / originate from a wide range of spatial scales (e.g., SF)

Fig.: HI-H2 conversion and SF process as a function of spatial scales (Saintonge+ 2022).

Main challenges for extragalactic observations

- Reach small enough scales to disentangle ISM components or recover them through indirect, integrated, signatures
- Understand/generalize physical mechanisms in conditions \neq from MW

Physical processes generally act on / originate from a wide range of spatial scales (e.g., SF)

Fig.: HI-H2 conversion and SF process as a function of spatial scales (Saintonge+ 2022).

Main challenges for extragalactic observations

- Reach small enough scales to disentangle ISM components or recover them through indirect, integrated, signatures
- Understand/generalize physical mechanisms in conditions \neq from MW

Digest & process wealth of spatial information

Combine detailed ISM models with state-of-the-art radiative transfer and chemistry + complex enough geometries

Fig.: NGC 7496, HST+JWST, PHANGS

Fig.: NGC 4254, MUSE (blue/yellow) + ALMA (orange), PHANGS

Vianney Lebouteiller (CNRS/AIM, CEA Saclay) Observing and modeling the extragalactic ISM

Expanding the parameter space and generalizing mechanisms

Detailed studies of nearby galaxies.

- ≠ environments at large
 - Z & ISM phases, young stellar clusters, X-ray binaries, AGNs, interactions...
- \neq predominance of physical processes
 - Photoelectric effect, X-ray photoionization, CR ionization, shocks...

Main obstacles

- Knowledge of dust & energetic sources
- Mixing biases when dealing with poor/no spatial/spectral resolution

to be adapted to the Early Universe

- Multiphase ISM also revealed at very high-z (e.g., (CII) 158 μm, (OIII) 88 μm (e.g., Harikane+ 2020)
- Spatial information increasingly available (e.g., Wong+ 2022, Dye+ 2022)

Fig.: CO(7-6), H₂, and (CI) lines in a z = 4.24lensed galaxy with ALMA (Dye+ 2022)

Expanding the parameter space and generalizing mechanisms

Detailed studies of nearby galaxies.

- ≠ environments at large
 - Z & ISM phases, young stellar clusters, X-ray binaries, AGNs, interactions...
- \neq predominance of physical processes
 - Photoelectric effect, X-ray photoionization, CR ionization, shocks...

Main obstacles

- Knowledge of dust & energetic sources
- Mixing biases when dealing with poor/no spatial/spectral resolution

... to be adapted to the Early Universe

- Multiphase ISM also revealed at very high-z (e.g., (CII) 158 μ m, (OIII) 88 μ m (e.g., Harikane+ 2020)
- Spatial information increasingly available (e.g., Wong+ 2022, Dye+ 2022)

Fig.: CO(7-6), H_2 , and (CI) lines in a z = 4.24lensed galaxy with ALMA (Dye+ 2022)

Cosmic noon zoom

Fig.: IRAC1 blobs in SMACS0723 field are likely z=1-3 red spiral galaxies (NIRcam; Fudamoto+ 2022)

... but spectra of $z\gtrsim 3$ galaxies will remain spatially-unresolved with JWST for the most part

Exploring the metal-poor ISM

Mass-metallicity relation (MZR): metal-enriched outflow rate, variable integrated IMF, infall (radial for low M* vs. cosmological for high M*) rate (e.g., Spitoni+ 2010)

Fig.: MZR in Local Group dlrr and dSph (Kirby+ 2013)

Fig.: MZR vs. z in cosmological simulations (illustrisTNG; Torrey+ 2019). Absolute calibration somewhat uncertain due to Z calibration with observations.

Fig.: MZR in the local Universe and SDSS z<0.2 galaxies (Duarte Puertas+ 2022)

Exploring the metal-poor ISM

Mass-metallicity relation (MZR): metal-enriched outflow rate, variable integrated IMF, infall (radial for low M* vs. cosmological for high M*) rate (e.g., Spitoni+ 2010)

Fig.: MZR in Local Group dlrr and dSph (Kirby+ 2013)

Eleg(1, /Ai) = 88 Eleg(1, /Ai) = 88 Eleg(1, /Ai) = 90 Eleg(1, /Ai)

Fig.: MZR vs. z in cosmological simulations (IllustrisTNG; Torrey+ 2019). Absolute calibration somewhat uncertain due to Z calibration with observations.

Fig.: MZR in the local Universe and SDSS z<0.2 galaxies (Duarte Puertas+ 2022)

Exploring the metal-poor ISM

Mass-metallicity relation (MZR): metal-enriched outflow rate, variable integrated IMF, infall (radial for low M* vs. cosmological for high M*) rate (e.g., Spitoni+ 2010)

Fig.: MZR in Local Group dlrr and dSph (Kirby+ 2013)

Fig.: MZR vs. z in cosmological simulations (IllustrisTNG; Torrey+ 2019). Absolute calibration somewhat uncertain due to Z calibration with observations.

+

og(O/H)

Log $(M_*/M_{\odot}) = 8.0$ Log $(M_*/M_{\odot}) = 8.5$

$$\begin{split} Log(M_*/M_\odot) &= 9.0\\ Log(M_*/M_\odot) &= 9.5\\ Log(M_*/M_\odot) &= 10.0 \end{split}$$

 $Log(M_*/M_{\odot}) = 10.5$

Fig.: MZR in the local Universe and SDSS z<0.2 galaxies (Duarte Puertas+ 2022)

Observed diversity in the ISM composition/physical conditions

Fig.: C/O gas phase abundance ratio (Nichoils+ 2017)

Fig.: D/G and mass fraction of small amorphous carbons (Galliano+ 2021)

Observed diversity in the ISM composition/physical conditions

Fig.: CO SLED (Cañameras+ 2018)

ig.: Molecular line ratios in M51 (CLAWS; ten Brok+ 2022)

Fig.: C/O gas phase abundance ratio (Nicholls+ 2017)

Fig.: D/G and mass fraction of small amorphous carbons (Galliano+ 2021)

Observed diversity in the ISM composition/physical conditions

Fig.: CO SLED (Cañameras+ 2018)

Fig.: Molecular line ratios in M51 (CLAWS; den Brok+ 2022)

Fig.: C/O gas phase abundance ratio (Nicholls+ 2017)

Fig.: D/G and mass fraction of small amorphous carbons (Galliano+ 2021)

Observed diversity in the ISM composition/physical conditions

Fia.: CO SLED (Cañameras+ 2018)

Fig.: Molecular line ratios in M51 (CLAWS; den Brok+ 2022)

all marine at the second and a second a s

Fig.: C/O gas phase abundance ratio (Nicholls+ 2017)

Fig.: D/G and mass fraction of small amorphous carbons (Galliano+ 2021)

Observed diversity in the radiation sources

Young massive clusters

■ Upper cut-off mass value debated (Mok+ 2019) but maximum L & M reach ≥ 2 dex above MW (Portegies Zwart 2010)

Fig.: Mass-size relationship in young star clusters and associations (Portegies Zwart 2010, Santoro+ 2022)

igh-mass X-ray binaries

- Often dominate the high-E output from nearby actively SF galaxies (e.g. Grimm+ 2003, Mineo+2012)
- Typically provide ~ 10³⁹⁻⁴¹ erg/s (I.e., ~1-10% of total L!). Feedback may keep the (dust-poor) ISM warm without removing a significant gas fraction (Artale+ 2015)
- Higher abundance & luminosity at low Z / high z (Gilbertson+ 2022, Lehmer+ 2021)
- Mass of stellar accreting partner & SFR correlation hints at production site / presence in young massive clusters

Fig.: Number of ULXs per unit SFR as a function of metallicity (Lehmer+ 2021)

Vianney Lebouteiller (CNRS/AIM, CEA Saclay)

Observed diversity in the radiation sources

Young massive clusters

■ Upper cut-off mass value debated (Mok+ 2019) but maximum L & M reach ≥ 2 dex above MW (Portegies Zwart 2010)

Fig.: Mass-size relationship in young star clusters and associations (Portegies Zwart 2010, Santoro+ 2022)

High-mass X-ray binaries

- Often dominate the high-E output from nearby actively SF galaxies (e.g. Grimm+ 2003, Mineo+ 2012)
- Typically provide ~ 10³⁹⁻⁴¹ erg/s (i.e., ~1-10% of total L!). Feedback may keep the (dust-poor) ISM warm without removing a significant gas fraction (Artale+ 2015)
- Higher abundance & luminosity at low Z / high z (Gilbertson+ 2022, Lehmer+ 2021)
- Mass of stellar accreting partner & SFR correlation hints at production site / presence in young massive clusters

Fig.: Number of ULXs per unit SFR as a function of metallicity (Lehmer+ 2021).

Cold ISM within the galaxy evolution context

Star-formation main sequence (MS; SFR vs. M+) set by gas content and efficiency gas ightarrow stars

- MS normalization with z set by available gas supply from accretion
- At low z, position along MS, including flattening above M_{knee}, follows M_{H2} vs. M• while scatter around MS follows molecular gas fraction
- Time-independent shape of MS \Rightarrow long SF duty cycles (~ Gyr) as opposed to quick $\uparrow\downarrow$ due to SFH) (e.g., Saintonge+ 2022)
- Strong function of M+: low mass galaxies in particular have extended HI reservoirs largely decoupled from the star formation process.
- Equilibrium of gas accretion, star formation, and gas outflows : the "gas regulator models" (e.g., Bouché+10; Davé+12; Rathaus+16; Tacchella+20)

Fig.: MS vs. z with Herschel stacking (Schreiber+ 2014)

Fig.: Mass relationships (Saintonge+ 2022)

Vianney Lebouteiller (CNRS/AIM, CEA Saclay) Observing and modeling the extragalactic ISM

Cold ISM within the SF context

Dense gas fraction

- SF set by processes acting on different spatial scales
 - CO does not trace well the dense molecular gas (e.g., Roman-Duval+ 2016)
- Accounting for dense gas fraction within galaxies still results in non-constant SFE (EMPIRE: Jimeñez-Donalre+ 2019, Beslic+ 2021)
 - Dense gas threshold SF models (universal τ_{dep} above n_t) may remain valid even at small scales (<100pc) \Rightarrow use tracers with even higher critical densities?
 - Turbulence-regulated SF models with feedback (e.g., Krumhoiz & Mc Kee 2005, Federrath & Klessen 2012)?

Fig.: Top: SFE(dense) vs. P in EMPIRE (Jimeñez-Donaire+ 2019), bottom: vs. f(dense) in NGC3627 (Beslic+ 2021)

Vianney Lebouteiller (CNRS/AIM, CEA Saclay) Observing and modeling the extragalactic ISM

Cold ISM within the SF context

Dense gas fraction

- SF set by processes acting on different spatial scales
 - CO does not trace well the dense molecular gas (e.g., Roman-Duval+ 2016)
- Accounting for dense gas fraction within galaxies still results in non-constant SFE (EMPIRE: Jimeñez-Donaire+ 2019, Beslic+ 2021)
 - Dense gas threshold SF models (universal τ_{dep} above n_t) may remain valid even at small scales (<100pc) \Rightarrow use tracers with even higher critical densities?
 - Turbulence-regulated SF models with feedback (e.g., Krumholz & Mc Kee 2005, Federrath & Klessen 2012)?

Fig.: Top: SFE(dense) vs. P in EMPIRE (Jimeñez-Donaire+ 2019), bottom: vs. f(dense) in NGC3627 (Beslic+ 2021)

Vianney Lebouteiller (CNRS/AIM, CEA Saclay)

Physical processes to explore in a comprehensive way

Gas & SF

- How do molecular clouds form, how long do they live? What sets the SFE?
 - \blacksquare Conversion diffuse \rightarrow dense, molecular gas vs. SF (CO-dark $\rm H_2,$ SK law)

- SF process itself ~ pc-scales: studies of protostars, SF filaments, and cloud-cloud collisions in Magellanic Clouds
 - Hot cores and complex organic molecules in the LMC (CH_3OCH_3 , CH_3OCHO ... with ALMA), chemical differences may suggest local mixing of gas with ≠ metallicity (*Sewilo+ 2018, 2022*)
 - Protostellar CO outflows in the SMC with ALMA (Tokuda+ 2022)
 - More to come with JWST, ELT...

Fig.: Bona fide hot core in the LMC (Sewilo+ 2022)

Physical processes to explore in a comprehensive way

Gas & SF

- How do molecular clouds form, how long do they live? What sets the SFE?
 - \blacksquare Conversion diffuse \rightarrow dense, molecular gas vs. SF (CO-dark $\rm H_2,$ SK law)

- SF process itself ~ pc-scales: studies of protostars, SF filaments, and cloud-cloud collisions in Magellanic Clouds
 - Hot cores and complex organic molecules in the LMC $(CH_3OCH_3, CH_3OCHO...$ with ALMA), chemical differences may suggest local mixing of gas with \neq metallicity (*Sewilo+ 2018, 2022*)
 - Protostellar CO outflows in the SMC with ALMA (Tokuda+ 2022)
 - More to come with JWST, ELT...

Fig.: Bona fide hot core in the LMC (Sewilo+ 2022)

Physical processes to explore in a comprehensive way (cont'd)

Turbulence

- CH⁺ out-of-equilibrium H₂ / dissipation of mechanical energy in turbulence (Godard+ 2022)
- At high-z: shock waves powered by hot galactic winds & turbulent cool gas reservoirs (e.g., Vidal-Garcia+ 2021, Falgarone+ 2017, Muller+ 2017) ⇒ A. Vidal-Garcia's talk

Magnetic field

 SALSA Legacy Program: SOFIA HAWK+ observations of 14 nearby galaxies (Lopez-Rodriguez+ 2022)

Fig.: SALSA NGC 1097 (Lopez-Rodriguez+ 2022)

Physical processes to explore in a comprehensive way (cont'd)

Turbulence

- CH⁺ out-of-equilibrium H₂ / dissipation of mechanical energy in turbulence (Godard+ 2022)
- At high-z: shock waves powered by hot galactic winds & turbulent cool gas reservoirs (e.g., Vidal-Garcia+ 2021, Falganone+ 2017, Muller+ 2017) ⇒ A. Vidal-Garcia's talk

Magnetic field

 SALSA Legacy Program: SOFIA HAWK+ observations of 14 nearby galaxies (Lopez-Rodriguez+ 2022)

Fig.: SALSA NGC 1097 (Lopez-Rodriguez+ 2022)

Some highlights

CO-dark molecular gas and (CII)

\Rightarrow S. Madden's talk

MW

 Dark gas mass fraction not traced by CO or HI is 20 – 40% in MW, most likely (CO-dark) molecular gas (DMG) as opposed to optically-thick HI (Grenier+2005, Wolfire+2010, Havashi-2019, Murav+2018)

local Group

- f_{DMG} ≈ 80-90% in SMC/LMC SF regions (e.g., Piñeda+ 2017, Lebouteiller+ 2019)
- $\alpha_{\rm CO} > {\rm MW}$
- ... but fully accountable for by the CO filling factor (i.e., confirming that Z effect is to reduce the filling factor of molecular gas traced by CO due to low D/G) (Pheda+ 2017, (see also Modrenjea+ 2016 in M33)

Fig.: (Madden+ 2020)

CO-dark molecular gas and (CII)

\Rightarrow S. Madden's talk

MW

 Dark gas mass fraction not traced by CO or HI is 20 – 40% in MW, most likely (CO-dark) molecular gas (DMG) as opposed to optically-thick HI (Grenier+ 2005, Wolfre+ 2010, Havashi- 2019, Murav+ 2018)

Local Group

- f_{DMG} ≈ 80-90% in SMC/LMC SF regions (e.g., Piñeda+ 2017, Lebouteiller+ 2019)
- $\alpha_{\rm CO}$ > MW
- ... but fully accountable for by the CO filling factor (i.e., confirming that Z effect is to reduce the filling factor of molecular gas traced by CO due to low D/G) (Piñeda+2017) (see also Mookerjea+2016 in M33)

Fig.: (Madden+ 2020)

CO-dark molecular gas and (CII) (cont'd)

Extragalactic observations

- (CII) and other emission-lines readily available at high-z
- From models, (CII) and (CI) become increasingly good tracers of the H₂ column density profile at low Z and for cosmic ray ionization rate $\zeta_H \ge 10^{-14} \text{ s}^{-1}$ (Bisbas+ 2021)
- Dwarf Galaxy Survey (metal-poor SF galaxies) (Madden+ 2013)
 - Integrated (CII) emission
- = $f_{DMG} \approx 70-100\%$, M_{H2} follows closely L_{CII} in a single 1D model approach where A_V fraced by (CII)/CO is the main parameter (*Maddent* 2020)
- CO-to-H₂ conversion factor (α_{CO}) not a simple function of Z but depends on the CO filling factor which can be partly recovered from the models. (*Ramambasion+ in prep.*)

Fig.: CO-to-H₂ value between MW value and extreme case of CO uniformly distributed (Ramambason+ in prep.) (\Rightarrow L. Ramambason's poster)

CO-dark molecular gas and (CII) (cont'd)

Extragalactic observations

- (CII) and other emission-lines readily available at high-z
- From models, (CII) and (CI) become increasingly good tracers of the H₂ column density profile at low Z and for cosmic ray ionization rate $\zeta_H \gtrsim 10^{-14} \text{ s}^{-1}$ (Bisbas+ 2021)
- Dwarf Galaxy Survey (metal-poor SF galaxies) (Madden+ 2013)
- Integrated (CII) emission
- $f_{DMG} \approx$ 70-100%, M_{H2} follows closely L_{CII} in a single 1D model approach where A_V traced by (CII)/CO is the main parameter (Madden+ 2020)
- CO-to-H₂ conversion factor (α_{CO}) not a simple function of Z but depends on the CO filling factor which can be partly recovered from the models (*Ramambason+ in prep.*)

Fig.: CO-to-H₂ value between MW value and extreme case of CO uniformly distributed (Ramambason+ in prep.) (\Rightarrow L. Ramambason's poster)

CO-dark molecular gas and (CII) (cont'd)

Extragalactic observations

- (CII) and other emission-lines readily available at high-z
- From models, (CII) and (CI) become increasingly good tracers of the H₂ column density profile at low Z and for cosmic ray ionization rate $\zeta_H \gtrsim 10^{-14} \text{ s}^{-1}$ (Bisbas+ 2021)
- Dwarf Galaxy Survey (metal-poor SF galaxies) (Madden+ 2013)
- Integrated (CII) emission
- $f_{DMG} \approx$ 70-100%, M_{H2} follows closely L_{CII} in a single 1D model approach where A_V traced by (CII)/CO is the main parameter (Madden+ 2020)
- CO-to-H₂ conversion factor (α_{CO}) not a simple function of Z but depends on the CO filling factor which can be partly recovered from the models (*Ramambason+ in prep.*)

Fig.: CO-to-H₂ value between MW value and extreme case of CO uniformly distributed (Ramambason+ in prep.) (\Rightarrow L. Ramambason's poster)

Some highlights

CO-dark

Possible to receover distributions of dense clouds even for integrated galaxies

PDR heating

Limits of the PE heating

- Evidence for PAH emission tracing (and PAH carriers likely dominating) neutral atomic gas heating through PE (Helou+ 2001, Croxall+ 2012, Leboutelller+ 2012, 2019, Lambert-Huyghe+ 2022, Berné+ 2022)
- Low D/G and PAH abundance (e.g., Galliano+2021) ⇒ low Z? Compensation by very small grains? By other heating mechanisms related to SF?

Vianney Lebouteiller (CNRS/AIM, CEA Saclay)

PDR heating

Limits of the PE heating

- Evidence for PAH emission tracing (and PAH carriers likely dominating) neutral atomic gas heating through PE (Helou+ 2001, Croxall+ 2012, Leboutelller+ 2012, 2019, Lambert-Huyghe+ 2022, Berné+ 2022)
- Low D/G and PAH abundance (e.g., Galliano+2021) ⇒ low Z? Compensation by very small grains? By other heating mechanisms related to SF?

Vianney Lebouteiller (CNRS/AIM, CEA Saclay)

PDR heating

Limits of the PE heating

- Evidence for PAH emission tracing (and PAH carriers likely dominating) neutral atomic gas heating through PE (Helou+ 2001, Croxall+ 2012, Leboutelller+ 2012, 2019, Lambert-Huyghe+ 2022, Berné+ 2022)
- Low D/G and PAH abundance (e.g., Galliano+2021) ⇒ low Z? Compensation by very small grains? By other heating mechanisms related to SF?

Vianney Lebouteiller (CNRS/AIM, CEA Saclay)

Pushing (CII) and PE to the limit

Model

 $\blacksquare~$ IZw18, 18Mpc, 1/35 Z_{\odot} , D/G \sim 1000 lower than MW

Fig.: IZw18 modeling strategy (Lebouteiller+ 2017)

Beyond the MW PE paradigm

- Single ULX dominates neutral gas heating with negligible contribution from PE
- (CII) traces an almost purely neutral atomic gas

Fig.: Cooling/heating contributions in the radiation-bounded (PDR) sector (Lebouteiller+ 2017)

Pushing (CII) and PE to the limit

Model

 $\blacksquare~$ IZw18, 18Mpc, 1/35 Z_{\odot} , D/G \sim 1000 lower than MW

Fig.: IZw18 modeling strategy (Lebouteiller+ 2017)

Beyond the MW PE paradigm

- Single ULX dominates neutral gas heating with negligible contribution from PE
- (CII) traces an almost purely neutral atomic gas

Fig.: Cooling/heating contributions in the radiation-bounded (PDR) sector (Lebouteiller+ 2017)

Pushing (CII) and PE to the limit

Model

 \blacksquare IZw18, 18Mpc, 1/35 $\rm Z_{\odot}$, D/G \sim 1000 lower than MW

Fig.: IZw18 modeling strategy (Lebouteiller+ 2017)

Beyond the MW PE paradigm

- Single ULX dominates neutral gas heating with negligible contribution from PE
- (CII) traces an almost purely neutral atomic gas

Cosmic rays

CRIR

- H₃⁺ measurements: $\zeta_H \approx 3 \times 10^{-16} \text{ s}^{-1}$ MW disk (e.g., Indriolo+ 2009, 2012), ~ 10 1000 larger in GC (Oka+ 2019)
- Nearby SB galaxy disks (e.g., Van der Tak+ 2016), nuclei (e.g., ALCHEMI, Holdship+ 2022), and ULIRG nuclei (e.g., González-Alfonso+ 2018) with ionized molecules in dense gas (e.g., H₂O⁺), even lensed galaxies beyond z > 2 (Indriolo+ 2018), all suggesting MW-like range of values 10⁻¹⁶, -13 s⁻¹

CR impact on ISM

- Ionization of molecules in dense gas \Rightarrow chemical network
- Along with gas density, CRIR impact ISM fractionation in external galaxies (isotopic ratios) (e.g. VIII+ 2019, 2020)
- Impacts the use of (CII) and (OI) through increased C, C⁺ column densities wrt CO, impacts somewhat X_{CO} factor as well (Bisbase 2021)
- Difficult distinction between CR and hard X-rays...

Prospectives for the diffuse/large-scale ISM

- Cosmic-ray-induced near-IR H₂ line emission with JWST (Bialy+ 2021, Gaches+ 2022)
- Also H₃⁺ with JWST (Indriolo+ 2007)

Cosmic rays

CRIR

- H₃⁺ measurements: $\zeta_H \approx 3 \times 10^{-16} \text{ s}^{-1}$ MW disk (e.g., Indriolo+2009, 2012), ~ 10 1000 larger in GC (Oka+2019)
- Nearby SB galaxy disks (e.g., Van der Tak+ 2016), nuclei (e.g., ALCHEMI, Holdship+ 2022), and ULIRG nuclei (e.g., González-Alfonso+ 2018) with ionized molecules in dense gas (e.g., H₂O⁺), even lensed galaxies beyond z > 2 (Indriolo+ 2018), all suggesting MW-like range of values 10⁻¹⁶, -13 s⁻¹
- ζ_H is larger in regions of more copious star formation: depends on proximity to cosmic-ray accelerators, particle propagation effects, and losses via interactions with the ISM (indriolo+2018)

CR impact on ISM

- Ionization of molecules in dense gas ⇒ chemical network
- Along with gas density, CRIR impact ISM fractionation in external galaxies (isotopic ratios) (e.g. Viti+ 2019, 2020)
- Impacts the use of (CII) and (OI) through increased C, C⁺ column densities wrt CO, impacts somewhat X_{CO} factor as well (Bisbast 2021)
- Difficult distinction between CR and hard X-rays...

Prospectives for the diffuse/large-scale ISM

- Cosmic-ray-induced near-IR H₂ line emission with JWST (Bialy+ 2021, Gaches+ 2022)
- Also H₃⁺ with JWST (Indriolo+ 2007)

Cosmic rays

CRIR

- H₃⁺ measurements: $\zeta_H \approx 3 \times 10^{-16} \text{ s}^{-1}$ MW disk (e.g., Indriolo+2009, 2012), ~ 10 1000 larger in GC (Oka+2019)
- Nearby SB galaxy disks (e.g., Van der Tak+ 2016), nuclei (e.g., ALCHEMI, Holdship+ 2022), and ULIRG nuclei (e.g., González-Alfonso+ 2018) with ionized molecules in dense gas (e.g., H₂O⁺), even lensed galaxies beyond z > 2 (Indriolo+ 2018), all suggesting MW-like range of values 10⁻¹⁶, -13 s⁻¹

CR impact on ISM

- Ionization of molecules in dense gas ⇒ chemical network
- Along with gas density, CRIR impact ISM fractionation in external galaxies (isotopic ratios) (e.g. Viti+ 2019, 2020)
- Impacts the use of (CII) and (OI) through increased C, C⁺ column densities wrt CO, impacts somewhat X_{CO} factor as well (Bisbas+ 2021)
- Difficult distinction between CR and hard X-rays...

Prospectives for the diffuse/large-scale ISM

- Cosmic-ray-induced near-IR H₂ line emission with JWST (Bialy+ 2021, Gaches+ 2022)
- Also H₃⁺ with JWST (Indriolo+ 2007)

Formation/destruction timescales of molecular clouds

PHANGS-* (ALMA, Hα, MUSE, VLA...): timescales for GMC formation, cluster formation, HII region formation and front expansion, decorrelation cloud/cluster

Fig.: Gas-to-SFR ratio, see, e.g., (Kruijssen+ 2019, Chevance+ 2022a)

Formation/destruction timescales of molecular clouds (cont'd)

Short-lived molecular clouds and rapid feedback \Rightarrow inefficient SF

LMC

■ LMC: GMC lifetime ≈11Myr likely set by internal processes rather than galactic dynamics, contrary to HI clouds (Ward+ 2022)

MS galaxies

- Molecular cloud lifetime ("inert" phase) ~16 Myr (Kim+ 2022)
- Efficiently dispersed by stellar feedback within 1-5 Myr once the star-forming region becomes partially exposed. Early feedback mechanisms (photoionisation and stellar winds) efficiently disperse molecular clouds, prior to SNe explosions (see also Chevance+2022E) ⇒ A. Zakardjian's talk
- (integrated cloud-scale star formation efficiency \approx 1-8%)
- 1/2 CO and Hα is diffuse
- CO-visible cloud lifetimes become shorter with decreasing galaxy mass, attributed to CO-dark H₂ mass at low Z

Last word on observations

Period is ripe for synergistic dataset analyses

- Resolved, IFUs: (Blue)MUSE, JWST, ALMA/NOEMA then SKA
- Sweet spot @ $z \leq 2$ (UV \rightarrow opt., opt. \rightarrow NIRspec, near-IR \rightarrow MIRI, CO ladder with ALMA)
- Sweet spot @ $z \sim 7$ (UV \rightarrow NIRspec, far-IR \rightarrow ALMA, CO \rightarrow SKA)

Few considerations

- UV emission lines N IV), C IV, He II, O III), Si III), C III)... (~1400-1900Å): accurate diagnostics for E(B-V), n_e, T_e, O/H, U... (Mingozzi+2022)
- Mid-IR diagnostics will remain unavailable at z ~ 2 10 until PRIMA (http://agora.lam.fr)

Last word on observations

Period is ripe for synergistic dataset analyses

- Resolved, IFUs: (Blue)MUSE, JWST, ALMA/NOEMA then SKA
- Sweet spot @ $z \leq 2$ (UV \rightarrow opt., opt. \rightarrow NIRspec, near-IR \rightarrow MIRI, CO ladder with ALMA)
- Sweet spot @ $z \sim 7$ (UV \rightarrow NIRspec, far-IR \rightarrow ALMA, CO \rightarrow SKA)

Few considerations

- UV emission lines N IV), C IV, He II, O III), Si III), C III)... (~1400-1900Å): accurate diagnostics for E(B-V), n_e, T_e, O/H, U... (Mingozzi+2022)
- Mid-IR diagnostics will remain unavailable at z ~ 2 10 until PRIMA (http://agora.lam.fr)

Last word on observations

Period is ripe for synergistic dataset analyses

- Resolved, IFUs: (Blue)MUSE, JWST, ALMA/NOEMA then SKA
- Sweet spot @ $z \leq 2$ (UV \rightarrow opt., opt. \rightarrow NIRspec, near-IR \rightarrow MIRI, CO ladder with ALMA)
- Sweet spot @ $z \sim 7$ (UV \rightarrow NIRspec, far-IR \rightarrow ALMA, CO \rightarrow SKA)

Few considerations

- UV emission lines N IV), C IV, He II, O III), Si III), C III)... (~1400-1900Å): accurate diagnostics for E(B-V), n_e, T_e, O/H, U... (Mingozzi+2022)
- Mid-IR diagnostics will remain unavailable at z ~ 2 10 until PRIMA (http://agora.lam.fr)

Modeling strategies

Scale & adapt

Challenges

- Integrate adapted prescriptions in models (e.g., low metallicity chemistry, dust properties etc...) and in the input energetic sources
- Distinguish physical processes for galaxies (e.g., photoionization, shocks, turbulence, B, CRs...) from spatially/spectrally unresolved tracers
- Account for ISM complexity (e.g., phases, distribution of matter...)
- Account for geometry gas+sources (distribution, optical depth, projection effects...), only partly alleviated by spatial/spectral decomposition and/or IFUs
- High level of degeneracy ⇒ manage multiple solutions in large grids

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
	3D RT post-processing tools exist, e.g., with MOCASSIN	light chemistry network

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
1D	3D RT post-processing tools exist, e.g., with MOCASSIN State-of-the-art RT & chemistry	light chemistry network Scale to complex geometries
		Geometry (gas+sources) not free parameter

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
	3D RT post-processing tools exist, e.g., with MOCASSIN	light chemistry network
1D	State-of-the-art RT & chemistry	Scale to complex geometries
Pure 3D	3D RT, diffuse light	Geometry (gas+sources) not free parameter

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
	3D RT post-processing tools exist, e.g., with MOCASSIN	light chemistry network
1D	State-of-the-art RT & chemistry	Scale to complex geometries
Pure 3D	3D RT, diffuse light	Geometry (gas+sources) not free parameter
MC 3D	Good 3D approximation	Geometry not free parameter

2016)

2022)

2022)

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
	3D RT post-processing tools exist, e.g., with MOCASSIN	light chemistry network
1D	State-of-the-art RT & chemistry	Scale to complex geometries
Pure 3D	3D RT, diffuse light	Geometry (gas+sources) not free parameter
MC 3D	Good 3D approximation	Geometry not free parameter
Pseudo-3D from 1D	State-of-the-art RT & chemistry	Not 3D! Geometry not free parameter
	Central ionizing source (AGN, PN, HII region)	
	Inferred geometry	

Method	Advantages	Difficulties
Simulations	Dynamical effects, large volume	Comparison with specific observations (statistics),
	3D RT post-processing tools exist, e.g., with MOCASSIN	light chemistry network
1D	State-of-the-art RT & chemistry	Scale to complex geometries
Pure 3D	3D RT, diffuse light	Geometry (gas+sources) not free parameter
MC 3D	Good 3D approximation	Geometry not free parameter
Pseudo-3D from 1D	State-of-the-art RT & chemistry	Not 3D! Geometry not free parameter
	Central ionizing source (AGN, PN, HII region)	
Topological 3D from 1D	Inferred geometry	Not 3D!

Topological models: multi-sector

Observed emission is the sum of N components distributed in several stellar clusters surrounded with several sectors described by 1D models (Péquignot 2008, Cormier+ 2012, Cormier+ 2019, Lebouteiller+ 2017, Polles+ 2019, Lebouteiller Ramambason 2022, Ramambason+ 2022)

Explanations

■ Combine 1D models that propagate radiation through HII region+PDR(+molecular cloud) ⇒ 1D (depth) structure constrained, need to constrain the spherical geometry (diffuse/reflected light and geometry simplification but still better than 1D though...!)

Modeling strategies

Topological models: locally optimally emitting clouds (LOC)

Observed emission is the result of strong selection effects due to the fact that some lines emit preferentially under some physical conditions (Ferguson+ 1997, Richardson+ 2014, 2016).

Applications

- Machine Learning application (Morisset+ in prep.)
- Depth/Ay: Application to statistical distribution of clouds with log-normal Ay in PDRs (Bisbas+ 2019)
 - + power-law tail due to self-gravity (possibly leading to star formation) reminiscent of result obtained in Ramambason+ (2022) for which only power-law distributions of depth can reproduce CO emission.

Global SED approach adapted to galaxy evolution parameters (z, SFH, IMF...)

Galaxy-wide parameters & gas properties

- CIGALE & x-CIGALE: global energy balance (Boquien+ 2019)
 - Full SED models from far-UV to far-IR
 - Using geometry templates for dust attenuation
- BEAGLE (Chevallard Charlot 2016)
 - Dust attenuation prescription related to inclination, global geometry (e.g., disk, bulge)
 - RT through ISM & IGM
- General
 - Nebular emission is accounted for (PDRs and CO in progress)
- \blacksquare So far simple grids with tabulated U and Z, constant $n{\sim}100~{\rm cm}^{-3}$

Complex models for single spectra

Still a relevant problem for single-dish/long-wavelength observations or for distant Universe

Objective: use the tracers to recover model parameters, including potentially geometry

Physical processes to explore in a comprehensive way (cont'd)

Energy input and gas heating mechanisms

- Neutral atomic gas: PE heating, soft X-rays, CRs...
- Molecular gas: hard X-rays, shocks, cosmic ray ionization...
 - Main challenge: knowledge on dust content, X-ray sources, CR propagation and SFR dependency
- All phases/scales: shocks expected from various sources acting on various scales (from mergers, AGNs, starbursts... to protostellar outflows and stellar winds)
 - Main challenge: lack of spatial decomposition/resolution – mixing biases

Dense gas fractions and SFE

Dense gas fraction in extragalactic ISM

- HCN, HCO⁺ more and more observations but still few studies apart from very nearby galaxies (e.g., Magellanic Clouds; *Galametz*+ 2020) and starbursts/AGNs
- Consistent results in that SFE > when dense gas fraction (or stellar surface density, interstellar P...) >, at kpc-scales (EMPIRE; Jimeñez-Donaire+ 2019) down to < 100pc-scales (Beslic+ 2021, PAWS Schinnerer in prep.)
 - SFE traced by IR/HCN or $H\alpha$ /HCN

Fig.: SFE(dense) vs. f(dense) in NGC3627 (Beslic+ 2021)

Fig.: NGC3627 with NOEMA and PHANGS-MUSE (Beslic+ 2021)

All in all favoring turbulence-regulated SF models (e.g., Burkhart & Mocz 2018)

& much more...

Shocks

 Near/mid-IR H₂ as well as optical lines for tracing relatively diffuse shocks (e.g., Hong+2013, Meding+ 2015) but difficult interpretation without spatial resolution JWST important for nearby galaxies

Dust and mineralogy with JWS1

- PAHs, fullerenes, CO₂ ice...
- Spitzer: crystalline silicates are a common component of the ISM (Spoon+ 2022)
 - Strength of crystalline silicate bands toward nuclei correlate with strength of amorphous silicate strength
 - Transition from emission to absorption at high obscuration consistent with an origin for the amorphous/crystalline silicate features in a centrally heated dust geometry (edge-on disk or coccon).
 - Crystalline silicate bands able to classify the obscuration level of AGNs, even in the presence of strong circumnuclear star formation

Fig.: Simulated MIR spectra of centrally heated dust shells with increasing dust mass (Spoon+ 2022) – amorphous silicates.

Fig.: Observed spectra showing the transition emission/absorption for crystalline silicates (Spoon+ 2022).

& much more...

Shocks

 Near/mid-IR H₂ as well as optical lines for tracing relatively diffuse shocks (e.g., Hong+2013, Medling+ 2015) but difficult interpretation without spatial resolution JWST important for nearby galaxies

Dust and mineralogy with JWST

- PAHs, fullerenes, CO₂ ice...
- Spitzer: crystalline silicates are a common component of the ISM (Spoon+ 2022)
 - Strength of crystalline silicate bands toward nuclei correlate with strength of amorphous silicate strength
 - Transition from emission to absorption at high obscuration consistent with an origin for the amorphous/crystalline silicate features in a centrally heated dust geometry (edge-on disk or coccon).
 - Crystalline silicate bands able to classify the obscuration level of AGNs, even in the presence of strong circumnuclear star formation

Fig.: Simulated MIR spectra of centrally heated dust shells with increasing dust mass (Spoon+ 2022) – amorphous silicates.

Fig.: Observed spectra showing the transition emission/absorption for crystalline silicates (Spoon+ 2022).

& much more...

Shocks

 Near/mid-IR H₂ as well as optical lines for tracing relatively diffuse shocks (e.g., Hong+2013, Medling+ 2015) but difficult interpretation without spatial resolution JWST important for nearby galaxies

Dust and mineralogy with JWST

- PAHs, fullerenes, CO₂ ice...
- Spitzer: crystalline silicates are a common component of the ISM (Spoon+ 2022)
 - Strength of crystalline silicate bands toward nuclei correlate with strength of amorphous silicate strength
 - Transition from emission to absorption at high obscuration consistent with an origin for the amorphous/crystalline silicate features in a centrally heated dust geometry (edge-on disk or coccon).
 - Crystalline silicate bands able to classify the obscuration level of AGNs, even in the presence of strong circumnuclear star formation

Fig.: Simulated MIR spectra of centrally heated dust shells with increasing dust mass (Spoon+ 2022) – amorphous silicates.

Fig.: Observed spectra showing the transition emission/absorption for crystalline silicates (Spoon+ 2022).