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Protoplanetary discs observations

Miotello+ 2022 (PPVII)
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Miotello+ 2022 (PPVII)
50 au

HD 163296: ALMA continuum
data from Andrews+ 2018

Protoplanetary discs observations
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Protoplanetary discs observations
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Miotello+ 2022 (PPVII)
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JWST!

Protoplanetary discs observations
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Miotello+ 2022 (PPVII)

Protoplanetary discs structure
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Miotello+ 2022 (PPVII)

Villenave+ 2022 (Oph 163131 disc)

Protoplanetary discs structure

color: HST scattered light @0.6µm
blue: 12CO(2-1)
white: continuum @1.3mm
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Miotello+ 2022 (PPVII)

CO snowline predicted by theoretical models
Qi+ 2013 
(TW Hya, early ALMA)

N2H+ + CO → HCO+ + N2

Protoplanetary discs structure
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50 au

Miotello+ 2022 (PPVII)

HD 163296: ALMA continuum
data from Andrews+ 2018

Protoplanetary discs structure



￼13

*  or hardly (e.g., Carmona 2010)

adapted from Kamber Schwarz

can’t see! *

H2 gas
~99% mass dust

~1% mass

observable 
at 𝛌≲ cm

other gases
≲ 10-4 mass

What is the mass of protoplanetary discs?
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What is the mass of protoplanetary discs?
from dust emission 

✤ is dust scattering negligible? Zhu+ 2019

q: minus the power-law 
exponent of dust size distribution

dust maximum size:

Andrews 2015

✤ is the dust’s continuum emission in the (sub-)mm 
really optically thin? 

✤ what is the actual dust/H2 mass ratio?

✤ dust temperature assumed to be known

✤ strong uncertainty in absorption opacity!



￼15

What is the mass of protoplanetary discs?
from dust emission 

✤ is dust scattering negligible? Zhu+ 2019

✤ is the dust’s continuum emission in the (sub-)mm 
really optically thin? 

✤ what is the actual dust/H2 mass ratio?

from gas emission 
✤ CO isotopologues: how does freeze-out on 

dust grains impact CO/H2 mass ratio?

Miotello+ 2022 (PPVII)

✤ HD: does not freeze out but only emits at 
T>20K; temperature vertical structure also 
needed

✤ dust temperature assumed to be known

✤ strong uncertainty in absorption opacity!
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What drives the gas evolution in discs?

✤ linear instability arising in discs dynamically coupled to a weak magnetic field

Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)?

|B|2/2µ0 . ⇢c2s

✤ disc reaches a quasi steady-state with 
turbulent mass accretion rates in fair 
agreement with observed stellar 
accretion rates (Ṁ ~ 10-8 M⦿ yr-1)

Gas Mach number (r.m.s. turbulent velocity in units of 
the  local sound speed). Disc extends from R=0.5 to 1.5 
au, r.m.s. turbulent velocity goes from ~1 to ~1000 m/s

Flock+ 2013

Balbus & Hawley 1991

✤  MRI-turbulent disc behaves much 
like a viscous disc
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What drives the gas evolution in discs?

MRI MRI

~0.1-1 au

MRI

MRI

~30 au

dead zone (MRI quenched by Ohmic diffusion, ambipolar diffusion)

→ Ohmic diffusion (electrons-neutrals collisions) and ambipolar diffusion (ions-neutrals collisions)  
quench MRI in a large fraction of the bulk disc

Balbus & Hawley 1991

Bai 2013, Simon+ 2013, Lesur+ 2014…

→ overall consistent with observations of the (small!) non-thermal broadening of molecular gas 
lines in discs eg, Flaherty+ 2015

thermal 

collisions

interstellar 

cosmic rays

X-rays, FUV photons

Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)?

✤ linear instability arising in discs dynamically coupled to a weak magnetic field

protoplanetary discs are in fact poorly ionized!
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Vertical transport (extraction) of angular momentum by magneto-centrifugal winds?

MRI MRI

~0.1-1 au

MRI

MRI

~30 au

B field lines

dead zone (MRI quenched by Ohmic diffusion, ambipolar diffusion)

wind?

wind?

eg, Blandford & Payne 1982, Béthune+ 2017

eg, Pascucci+ 2022 (PPVII)

✤ can other, weaker hydrodynamical instabilities become relevant?

What drives the gas evolution in discs?

✤ impact on planet formation and evolution? (global models needed)

✤ observational support via gas line kinematics?

✤ wind-driven laminar accretion if a vertical B field threads the disc
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

0.2 0.4 0.6 0.80

1

2

3

4

0.2 0.4 0.6 0.8
Gas density [g cm-2] at 500 orbits

-100 -50 0 50 100
x [au]

-100

-50

0

50

100
y 

[a
u] star

planet

vortex

spirals

gap

hydrodynamical simulation of a Jupiter-mass 
planet embedded in a protoplanetary disc
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

Andrews+ 2018 (ALMA@1.3mm)

48x38mas2 10 au

Wafflard-Fernandez & Baruteau 2020

Credit: Gaylor Wafflard-Fernandez
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?

protoplanetary disc around PDS 70 imaged by SPHERE (@~2.1μm, left, Müller+ 2018) 
and by ALMA (@~0.9mm, right, Benisty+ 2021)

10 au

PDS 70 

(~5 Myr, K7 star)

PDS 70b

a few Jupiter-mass

companion at ~20 au

PDS 70c 

(Haffert+ 19)

20 au
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

Credit: Gaylor Wafflard-Fernandez
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Pinte+ 2019
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except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
✤ velocity kinks could still provide indirect signatures of forming planets
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
✤ velocity kinks could still provide indirect signatures of forming planets

mechanisms other than planets could also cause sub-structures

50 au

Riols+ 2020
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𝛌=1 mm

✤ rings via zonal flows in low-turbulent discs?
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
✤ velocity kinks could still provide indirect signatures of forming planets

mechanisms other than planets could also cause sub-structures
✤ rings via zonal flows in low-turbulent discs? spirals via stellar flybys?

Cuello+ 2022
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What causes sub-structures in discs?
sub-structures seem ubiquitous in the gas and dust emissions
✤ dark and bright rings, crescent-like asymmetries, spirals…
✤ reminiscent to structures imparted by disc-planet interactions

except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
✤ velocity kinks could still provide indirect signatures of forming planets

mechanisms other than planets could also cause sub-structures
✤ rings via zonal flows in low-turbulent discs? spirals via stellar flybys, by remnant 

accretion of molecular cloud?

Hennebelle+ 2017



50% of exoplanets with orbital periods > 100 days 
and with masses between that of Saturn and 5x 
that of Jupiter have eccentricities in [0.1-0.4]

data extracted from  
exoplanet.eu

Planets more massive than Saturn can 
acquire a large eccentricity (up to 0.4) 
when migrating into a low-density gas 
cavity in their protoplanetary disc

A generic way to form eccentric warm 
Jupiters?

(median values shown)

Debras, Baruteau & Donati 2021
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How did most warm Jupiters become eccentric?
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How did most warm Jupiters become eccentric?

ca
vi

ty
 e

dg
e 

planet

2D gas+dust hydrodynamical 
simulations post-processed by 3D 
radiative transfer calculations

Baruteau, Wafflard-Fernandez, Le Gal et al. 2021

✤ uniform CO/H2 ratio, simple 
photodissociation model

✤ d=100pc, i=30°, 50mas beam, 1mJy/
beam rms noise per channel map

￼28

cavity edge
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… thanks!


