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Protoplanetarysdiscs structure

HST overlay hture
O

-

”
‘,,’
water snow line

vertical settling & radial drift

L T N R - NS

Dressure maximum

Villenave+ 2022 (Oph 163131 disc)

color: HST scattered light @0.6yum CO snow line

blue: 12CO(2-1) r [av] &¥—i pbii-——-+—-—1-+—
white: continuum @1.3mm 100 10 1

as densi
Miotello+ 2022 (PPVII)

denser —

10



Protoplanetarysdiscs structure
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Protoplanetarysdiscs structure
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What is the mass of protoplanetary discs?

H» gas
~99% mass

K~ other gases

< -4
, | * observable < 10 mass
can't see! at A< c

adapted from Kamber Schwarz

x
or hardly (e.g., Carmona 2010)
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What is the mass of protoplanetary discs?

® from dust emission

< is the dust’s continuum emission in the (sub-)mm
really optically thin?

+ is dust scattering negligible? Zhu+ 2019

+ strong uncertainty in absorption opacity!

+ dust temperature assumed to be known dust maximum size:
T4 Aoy = Tum
<+ what is the actual dust/H, mass ratio? o Aox = 10um
" Aoy = 0.1TmMmm
5
— 3 Apox = 1CM
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q: minus the power-law A [um] Andrews 2015
exponent of dust size distribution
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What is the mass of protoplanetary discs?

TW Hya

Miotello+ 2022 (PPVII)
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® from dust emission

< is the dust’s continuum emission in the (sub-)mm

various
really optically thin?
y op y HCO*
+ is dust scattering negligible? Zhu+ 2019 various
+ strong uncertainty in absorption opacity! CS
C18Q, NoH*
+ dust temperature assumed to be known
. i *CYO
<+ what is the actual dust/H; mass ratio? o
Trapman et al. (2017) _‘ HD XCYO [Cl]
- [CII], [Ol], C,H
.. Cleeves et al. (2015) HD, N,H*,
e from gas emission —— HCO*
Bergin et al. (2013) . HD

+ CO isotopologues: how does freeze-out on
dust grains impact CO/H; mass ratio?

Powell et al. (2017) +

Macias et al. (2021) ‘
+ HD: does not freeze out but only emits at

T>20K; temperature vertical structure also
needed

Andrews et al. (2012) ‘

Wilner et al. (2000) .

Menu et al. (2014) .

SED dust continuum combined studies of molecular lines

IIIIIIII ] Illlllll 1 L iy 1 1L
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Disk Mass (M)
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What drives the gassevolution in discs?

e Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)?

+ linear instability arising in discs dynamically coupled to a weak magnetic field
‘ Balbus & Hawley 1991

BI* /210 S pe;

<+ MRI-turbulent disc behaves much
like a viscous disc

+ disc reaches a quasi steady-state with
turbulent mass accretion rates in fair
agreement with observed stellar
accretion rates (M ~ 10-8 Mo yr1)

Gas Mach number (r.m.s. turbulent velocity in units of =~ Flock+ 2013
the local sound speed). Disc extends from R=0.5 to 1.5
au, r.m.s. turbulent velocity goes from ~1 to ~1000 m/s
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What drives the gassevolution in discs?

e Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)?

+ linear instability arising in discs dynamically coupled to a weak magnetic field
Balbus & Hawley 1991

interstellar

protoplanetary discs are in fact poorly ionized! coamic raye

----------
- -

thermal
collisions

~30 au

— Ohmic diffusion (electrons-neutrals collisions) and ambipolar diffusion (ions-neutrals collisions)
quench MRI in a large fraction of the bulk disc Bai 2013, Simon+ 2013, Lesur+ 2014...

— overall consistent with observations of the (small!) non-thermal broadening of molecular gas

lines in discs eg, Flaherty+ 2015
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What drives the gassevolution in discs?

® Vertical transport (extraction) of angular momentum by magneto-centrifugal winds?

<+ wind-driven laminar accretion if a vertical B field threads the disc
eg, Blandford & Payne 1982, Béthune+ 2017

B field lines

+ observational support via gas line kinematics? eg, Pascucci+ 2022 (PPVII)
+ impact on planet formation and evolution? (global models needed)

+ can other, weaker hydrodynamical instabilities become relevant?
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
+ dark and bright rings, crescent-like asymmetries, spirals...

92
HD 143006 Elias 27 @
S
>
o o)
- T
< &
B 5
2z
g ¢
o
U £
» <
cont 0.9mm
.
N
o
S
D~
N
L)
@ N
<
Lo
O
-

Boehler+ 2018

N

van der Plas+ 201

19



What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
2

+ reminiscent to structures imparted by disc-planet interactions
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
o2

+ reminiscent to structures imparted by disc-planet interactions

1.3 mm (model)

HD 163296

48x38mas?

Andrews+ 2018 (ALMA@1.3mm) Wafflard-Fernandez & Baruteau 2020

Credit: Gaylor Wafflard-Fernandez




What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
<

oo

® except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?

PDS 70
(~5 Myr, K7 star)

PDS 70c
(Haffert+ 19)

PDS 70b
a few Jupiter-mass
companion at ~20 au

protoplanetary disc around PDS 70 imaged by SPHERE (@~2.1um, left, Miiller+ 2018)
and by ALMA (@~0.9mm, right, Benisty+ 2021)
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
<

oo

® except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
+ velocity kinks could still provide indirect signatures of forming planets
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
<

oo

® except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
%

® mechanisms other than planets could also cause sub-structures
+ rings via zonal flows in low-turbulent discs?
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
<

oo

® except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
%

® mechanisms other than planets could also cause sub-structures
* spirals via stellar flybys?

-400 -200 0 200 400
x [au] Cuello+ 2022
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What causes sub-structures in discs?

e sub-structures seem ubiquitous in the gas and dust emissions
+ dark and bright rings, crescent-like asymmetries, spirals...

+ reminiscent to structures imparted by disc-planet interactions

e except in the PDS 70 disc (and maybe AB Aur), planets aren’t seen directly: why?
+ velocity kinks could still provide indirect signatures of forming planets

® mechanisms other than planets could also cause sub-structures

+ rings via zonal flows in low-turbulent discs? spirals via stellar flybys, by remnant
accretion of molecular cloud?

Hennebelle+ 2017
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How did most warm Jupiters become eccentric?
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10—6. D S R I O e Planets more massive than Saturn can
10" 10° 10 10° 100 10" 10" 10° acquire a large eccentricity (up to 0.4)
data extracted from  Orbitalperiod[day] . @) when migrating into a low-density gas

exoplanet.eu . ] . .
cavity in their protoplanetary disc

® 50% of exoplanets with orbital periods > 100 days

. ® A generic way to form eccentric warm
and with masses between that of Saturn and 5x 5 y

. C e upiters?
that of Jupiter have eccentricities in [0.1-0.4] Jup Debras, Baruteau & Donati 2021
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How did most warm Jupiters become eccentric?
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e 2D gas+dust hydrodynamical
simulations post-processed by 3D
radiative transfer calculations

+ uniform CO/Ha;ratio, simple
photodissociation model

+ d=100pc, i=30°, 50mas beam, 1m]Jy /

Baruteau, Wafflard-Fernandez, Le Gal et al. 2021 beam rms noise per channel map

‘ 12CO (3-2) integrated intensity near-IR polarized intensity
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