

The chemical nature of Orion protostars: Are ORANGES different from PEACHES?

Mathilde Bouvier

Leiden University, Leiden Observatory, The Netherlands

bouvier@strw.leidenuniv.nl

Collaborators: C. Ceccarelli¹, A. López-Sepulcre^{1,2}, N. Sakai³, S. Yamamoto^{4,5} and Y.-L. Yang³

¹Univ. Grenoble Alpes, CNRS, IPAG, France ²Institut de Radioastronomie Millimétrique (IRAM), France ³The Institute of Physical and Chemical Research (RIKEN), Japan ⁴The University of Tokyo, Japan ⁵Research Center for the Early Universe, The University of Tokyo, Japan

How does a solar-mass star form?

How does a solar-mass star form?

How does a solar-mass star form?

Two opposite cases in the protostars chemical diversity spectrum

Hot corinos

Ceccarelli 2004, Ceccarelli et al. 2007

WCCC* sources

Sakai et al. 2008, Sakai & Yamamoto 2013

Two opposite cases in the protostars chemical diversity spectrum

Two opposite cases in the protostars chemical diversity spectrum

Two opposite cases in the protostars chemical diversity spectrum

Hypothesis n°1: Difference of timescale of the pre-stellar core phase Sakai et al. 2008a, 2009a

Mathilde Bouvier

PCMi

Hypothesis n°1: Difference of timescale of the pre-stellar core phase Sakai et al. 2008a, 2009a

Interpretation challenged by Aikawa et al. (2020): hot corinos and hybrid sources can be reproduced but not pure WCCC sources

PCMi

erc

Mathilde Bouvier

Hypothesis n°2: Role of environmental factors (density, temperature, UV or CR irradiation) during the pre-stellar core phase e.g. Spezzano et al. 2016, 2020, Higuchi et al. 2018, Aikawa et al. 2020, Lattanzi et al. 2020, Kalvāns 2021

Hypothesis n°2: Role of environmental factors (density, temperature, UV or CR irradiation) during the pre-stellar core phase e.g. Spezzano et al. 2016, 2020, Higuchi et al. 2018, Aikawa et al. 2020, Lattanzi et al. 2020, Kalvāns 2021

PCMi

Adapted from Spezzano et al. 2016

Mathilde Bouvier

Hypothesis n°2: Role of environmental factors (density, temperature, UV or CR irradiation) during the pre-stellar core phase e.g. Spezzano et al. 2016, 2020, Higuchi et al. 2018, Aikawa et al. 2020, Lattanzi et al. 2020, Kalvāns 2021

Adapted from Spezzano et al. 2016

erc

Hypothesis n°2: Role of environmental factors (density, temperature, UV or CR irradiation) during the pre-stellar core phase e.g. Spezzano et al. 2016, 2020, Higuchi et al. 2018, Aikawa et al. 2020, Lattanzi et al. 2020, Kalvāns 2021

Adapted from Spezzano et al. 2016

erc

Hypothesis n°2: Role of environmental factors (density, temperature, UV or CR irradiation) during the pre-stellar core phase e.g. Spezzano et al. 2016, 2020, Higuchi et al. 2018, Aikawa et al. 2020, Lattanzi et al. 2020, Kalvāns 2021

Adapted from Spezzano et al. 2016

Mathilde Bouvier

erc

E.g. lower density, lower temperature and higher irradiation favour WCCC sources e.g. Aikawa et al. 2020, Kalvāns 2021

Oct. 24th-28th 2022, ENS Paris 5

Does the environment affects the chemical nature of solar-mass protostars?

PCMi

erc

Mathilde Bouvier

Does the environment affects the chemical nature of solar-mass protostars?

Study of solar-mass protostars chemical composition

- at small scales to avoid external contamination *Bouvier et al. 2020*
- in different environments

PCMi

Does the environment affects the chemical nature of solar-mass protostars?

PCMi

Goals of PEACHES and ORANGES

Mathilde Bouvier

erc

Study of solar-mass protostars chemical composition

- at small scales to avoid external contamination *Bouvier et al. 2020*
- in different environments

ORANGES and **PEACHES**

PCMi

ORion ALMA New GEneration Survey

Mathilde Bouvier

erc

P.I.: A. López-Sepulcre
Region: OMC-2/3 filament
Distance: ~390 pc Großschedl et al. 2018, 2021
Characteristics: Dense proto-cluster, hosts several massive stars
Sample: 19 solar-mass protostars
Hot corinos: ?

PErseus ALMA CHEmistry Survey

Hatchell et al. 2005

P.I.: N. Sakai
Region: Perseus Molecular Cloud Complex
Distance: ~300 pc Zucker et al. 2018
Environment: Loose proto-cluster, devoid of highmass stars
Sample: 50 solar-mass protostars
Hot corinos: 56 (14) % - Abundant Yang et al. 2021

ORANGES and **PEACHES**

ORion ALMA New GEneration Survey

erc

Mathilde Bouvier

P.I.: A. López-Sepulcre **Region:** OMC-2/3 filament

PErseus ALMA CHEmistry Survey

Two surveys using ALMA @1.3mm Similar spatial resolution (~100 au), sensitivity (~22-24 mJy/beam), and spectral setup

PCMi

PCMi

erc

Mathilde Bouvier

PCMi

Mathilde Bouvier

erc

PCMi

erc

Mathilde Bouvier

Target sources:

19 solar-mass protostars (based on Tobin et al. 2020, Bouvier et al. 2021)

Oct. 24th-28th 2022, ENS Paris 8

PCMi

erc

Mathilde Bouvier

Bouvier et al. 2022

Mathilde Bouvier

Bouvier et al. 2022

PCMi

Bouvier et al. 2022

PCMi

PCMi

Region hot, dense and compact

Mathilde Bouvier

erc

Bouvier et al. 2022

PCMi

5 new hot corinos detected in the OMC-2/3 filament!

Bouvier et al. 2022

Oct. 24th-28th 2022, ENS Paris 9

Region hot, dense and compact

Mathilde Bouvier

erc

ORANGES and **PEACHES**

PCMi

ORion ALMA New GEneration Survey

Mathilde Bouvier

erc

Sample: 19 protostars

Hot corinos: 26 (23)% -Bouvier et al. 2022

PErseus ALMA CHEmistry Survey

Hatchell et al. 2005

Sample: 50 solar-mass protostars Hot corinos: 56 (14) % - Abundant Yang et al. 2021

ORANGES and **PEACHES**

PCMi

ORion ALMA New GEneration Survey

Mathilde Bouvier

erc

Sample: 19 protostars Hot corinos: 26 (23)% -

Bouvier et al. 2022

PErseus ALMA CHEmistry Survey

Hatchell et al. 2005

Sample: 50 solar-mass protostars Hot corinos: 56 (14) % - Abundant Yang et al. 2021

ORANGES appears to be different from **PEACHES**!

(Possible) CAVEATS

1. Sample size

Large statistical error in ORANGES due to small sample. We need to improve statistics to firmly conclude.

PCMi

2. Dust

Optically thick dust can hide hot corinos at mm wavelengths! De Simone et al. 2020

Mathilde Bouvier

(Possible) CAVEATS

1. Sample size

erc

Mathilde Bouvier

Large statistical error in ORANGES due to small sample. We need to improve statistics to firmly conclude.

2. Dust

Optically thick dust can hide hot corinos at mm wavelengths! De Simone et al. 2020

Some sources with $\tau_D > 1$: Are there other hot corinos hiding in the dust?

Oct. 24th-28th 2022, ENS Paris 11

(Possible) CAVEATS

1. Sample size

Large statistical error in ORANGES due to small sample. We need to improve statistics to firmly conclude.

2. Dust

Optically thick dust can hide hot corinos at mm wavelengths! De Simone et al. 2020

Take home messages

- 5 new hot corinos detected in the OMC-2/3 filament!
- Hot corinos are scarce (<30%) in Orion whilst they are abundant (~60%) in Perseus.</p>
- To caveats:
 - the poor sample or ORANGES. We need to increase statistics
 - Due to the possible role of dust, we might have underestimated the number of hot corinos.

ORANGES may be different from **PEACHES** and the environment may be the culprit affecting the protostellar chemical nature.

Extra-galactic astrochemistry: A new era

Collaborators: Serena Viti*, and the MOPPEX team

What is the effect of the environment at much larger scales, in nearby galaxies? How is the chemistry in external galaxies affected by the various environments (i.e. AGN, starburst)?

MOPPEX: MOlecules as **P**robe of the **P**hysics of **EX**ternal galaxies (P.I.: S. Viti)

Goal: Establish a set of unique molecular tracers characterising various regions in different nearby galaxies, the AGN-starburst composite NGC 1068 and the pure starburst NGC 253.

ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory) Large Program (P.Is: S. Martín, N. Harada, J. Mangum)

PCMi

Mathilde Bouvier

Extra-galactic astrochemistry: A new era

Collaborators: Serena Viti*, and the MOPPEX team

What is the effect of the environment at much larger scales, in nearby galaxies? How is the chemistry in external galaxies affected by the various environments (i.e. AGN, starburst)?

MOPPEX: MOlecules as **P**robe of the **P**hysics of **EX**ternal galaxies (P.I.: S. Viti)

Goal: Establish a set of unique molecular tracers characterising various regions in different nearby galaxies, the AGN-starburst composite NGC 1068 and the pure starburst NGC 253.

ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory) Large Program (P.Is: S. Martín, N. Harada, J. Mangum)

Current projet: H₂S and S-bearing species in NGC 253, what do they trace?

PCMi

*Leiden University, Leiden Observatory, The Netherlands

Mathilde Bouvier

Extra-galactic astrochemistry: A new era

Collaborators: Serena Viti*, and the MOPPEX team

What is the effect of the environment at much larger scales, in nearby galaxies? How is the chemistry in external galaxies affected by the various environments (i.e. AGN, starburst)?

MOPPEX: MOlecules as **P**robe of the **P**hysics of **EX**ternal galaxies (P.I.: S. Viti)

Goal: Establish a set of unique molecular tracers characterising various regions in different nearby galaxies, the AGN-starburst composite NGC 1068 and the pure starburst NGC 253.

ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory) Large Program (P.Is: S. Martín, N. Harada, J. Mangum)

Current projet: H₂S and S-bearing species in NGC 253, what do they trace?

Stay tuned!

PCMi

*Leiden University, Leiden Observatory, The Netherlands

Mathilde Bouvier

ERC DOC: https://doc.osug.fr/

Thanks for your attention!

ERC MOPPEX: https://moppex.github.io/