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[ Context ]

e Astrochemistry: obtaining the most accurate census of the molecular content in the
interstellar medium (ISM)
Key questions: How do stars and planets form?
How do the organic molecules form?




[

Context

J

e Astrochemistry: obtaining the most accurate census of the molecular content in the
interstellar medium (ISM)

Key questions: How do stars and planets form?
How do the organic molecules form?

Our knowledge about ISM relies on molecular spectra

In the ISM, the low density cannot maintain local thermodynamic equilibrium (LTE)

Non-LTE analysis of the observational spectra 1s required

r

Knowledge of population of energy levels of interstellar molecules
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Studying collisional excitation of interstellar molecules by H and H,
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What has been done so far? ]

Excitation studies of interstellar molecules began in the 70’s (Dalgarno, Green, Flower,...)
“Molecular Universe” RTN network (2004-2008): update for a number of key molecules
Full quantum calculations feasible

Theoretical calculations rival the accuracy of experimental data

Highly accurate data available for ~50 molecules (over ~300 detected)

Precise determination of the molecular content in molecular clouds

See the review by Roueff and Lique (2013)
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Detection of new (reactive) molecules ]

r ™
New telescopes allow highly resolved observations
: 1657.2 GHz
Detection of reactive molecules (H,O*, OH*, CH ohot
HS...), 1.e. rapidly destroyed by H, H, or e (Black |
1998)
Key species for astrochemistry °|
5 L
Accurate analysis of the spectra is hampered by the b 97186GHz Y
complete lack of collisional data —100 =50 o _, 0 100
Visk (km s )
L0H+’ H,0* and H;0* towards Orion KL)
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Problematic: How can we get such collisional data?

 Complex competition between inelastic and reactive processes

E:> A(n’y) + B(n’
Inelastic (ll A) (Il B)

A(HA) + B(HB) —— AB* n: quantum state

[! Reactive C(HC) + D(IID)

* No available methods and codes to take into account the reactivity at a state-to-state level

| Development of new methods to provide collisional data for these molecules
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Towards a method to fully consider the inelastic / reactive competition ]

Schematically, the dynamics of gas-phase reactive collisions are governed by two mechanisms:

Energy

-
Abstraction reaction:

Exothermic abstraction reaction
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Reaction coordinate

Reduced dimension approaches
(neglecting the reaction process)
may be reliable at ISM
temperatures

Validity domain (if any) and
accuracy of these approaches
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Insertion reaction:

Exothermic insertion reaction

Energy
q|
+
O

N Intermediate complex

Reaction coordinate

Endothermic insertion reaction

C+D

Reaction coordinate

Reactive channels need a priori
to be included (especially for
exothermic reactions)

Statistical quantum approaches”
can be used to generate accurate
data for both collisional excitation
and reactive processes

* Formation of a long-lived intermediate complex: statistical distribution of the population of the energy levels




[ Study of molecular systems ]

Born-oppenheimer approximation (1927)

@%ﬁ

stages :
ab initio calculation of the potential . :
bo Study of the dynamical of the nuclei
energy surface between particules
r == R r == p
. Quantum Methods (TI et TD)
Quantum chemistry , ,
, . (Quasi-)Classical methods
Semi-empirical methods .
L y 0 Statistical methods y

Collisional cross sections calculations:

- Close Coupling (CPU time = Channel number?) o
Accuracy || - Coupled states (Neglect centrifugal distorsion) H - Statistical methods ?
- Quasi-Classical Trajectory



[ Reduced dimension approaches

Methods:

» Target: rigid rotor (internuclear distance fixed)

-
Abstraction reaction:

* Reactive channels are closed Transition state
* Equivalent to pure inelastic scattering EGT

A
A+B /
v
AE

* Validity domain and accuracy \ | c+D

Questions:

Energy

» Strategy for computing the interaction potential




[ Reduced dimension approaches ]

Methods:

» Target: rigid rotor (internuclear distance fixed)

* Reactive channels are closed

* Equivalent to pure inelastic scattering

Questions:

e Validity domain and accuracy

» Strategy for computing the interaction potential

Rigid rotor vs. Reactive calculations
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Energy

HX(v’,j’)+ H  Inelastic
HX(v,)+H — H'X(v’,j))+H Exchange

X +HyVv’,7) Reactive

Reactive channels are endo/exothermic

Influence of the reactive channels ?
(Reactive and exchange channels are

inhibited by a large barrier)

LSchematic representation of HCI + H reaction )




[ Reduced dimension approaches: HCI-H

Inelastic vs. reactive approaches for the excitation of HCl by H
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Rotational relaxation and destruction of HCI(j=1) induced by collisions with H

* Accurate description of the rotational excitation obtained using the rigid rotor approach
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* Accurate description of the rotational excitation obtained using the rigid rotor approach

Validation of rigid rotor approaches for reactive systems with barrier




[ Reduced dimension approaches: Applications ]

Collisional excitation of OH by H,
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Collisional excitation of H;0O* by H,

"
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Cross section (A2)
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[ Reduced dimension approaches: limitations

Collisional excitation of HeH* by H Exothermic insertion reaction
1097 HeH* + H— He + H,*
i 0—1
>
O |HeH*+H
GC) He + H,*
010 oRRWswok e s\ e
—ABC thiswork e
‘T/\ ----------------- ™ Intermediate complex
‘_Iw Reaction coordinate
9 10'11 L
>
(&)
o)
©
£ 12
- 12 L
c 10
o
X
10'13 =
10-14 ". L1 | 1 L |

10 20 30 40 50
Temperature (K)

Rate coefficients for the rotational excitation of HeH* (j =0 — j'= 1) by H.
___3D reactive results; -- non reactive results; ... Kulinich et al. (2020)

e Rigid rotors calculations overestimate the exact reactive ones

e Need of a method considering the competition between inelastic and reactive collisions
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[ Statistical approaches ]

Statistical adiabatic channels model (SACM; Quack & Troe 1974, Loreau et al. 2018)

Statistical approach - Adiabatic channels (adiabats) obtained by diagonalizing the Hamiltonian
excluding the nuclear kinetic term for each J:

«
2 v R? ‘ > a :angular functions of ¥



[ Statistical approaches ]

Statistical adiabatic channels model (SACM; Quack & Troe 1974, Loreau et al. 2018)

Statistical approach - Adiabatic channels (adiabats) obtained by diagonalizing the Hamiltonian
excluding the nuclear kinetic term for each J:

2
/
o | H, V «
< ’ int T T 9 7 R2 ‘ > a :angular functions of ¥
4 )
We assume that all open channels have the same
o probability 1/N(E,J), where N(E,J) is the number
= of open channels at an energy E for a given J:
=
& 1S (E )2 = 1/N(E,J) for open channels
5 S 0 for closed channels
[a
At energy E: Z l N
channels a, b: open . Uif(E) _ ™ 2(2] . 1)|Sif(E 7 |2.
channels c, d: closed 4 (2]-1 4 1)(2j2 +1) k2 pard
Internuclear distance R
\. J
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Statistical adiabatic channels model (SACM; Quack & Troe 1974, Loreau et al. 2018)
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* No need to include closed channels / The adiabatic curves are independant of energy

e Expected to be valid for collisional systems with a long-lived intermediate complex



[ Statistical approaches OH*-H ]

Application to the OH* - H strongly bound (non reactive) system
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Rate coefficients for OH*(j, = 6) + H— OH*(j;) + H as a function of j,” at a temperature of 200 K.

e The SACM approach slightly underestimates the transitions with Aj; = 1 compared to the CC
results, but all other transitions and propensities are nicely reproduced



[ Statistical approaches: HD-H* ]

Application to the HD - H* reactive system
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The two sets of data are in very good agreement, with differences lower than a factor of 1.5
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Statistical approaches: applications

Collisional excitation of SH+ and CH* by H
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Collisional excitation of HF by H,O
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[ Statistical approaches: limitations ]

Collisional excitation of HeH* by H Exothermic insertion reaction
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Rate coefficients, CC method

SACM and CC rate coefficients for HeH*(j) + H collisions

e SACM predicts the rate coefficients with a reasonable accuracy. Most rate coefficients are
accurate to within a factor 2-3.

e Discrepancies attributed to a non favourable formation of the complex



[ Conclusion ]

e Production of new collisional data for ions and radicals (H;O*, CF*, NS*, C,H, OH)

e Validation of the statistical adiabatic channels models for scattering calculations at low
temperatures and for strongly bound and reactive systems

 Ongoing work:
Generation of a SACM code to treat collisional excitation of ionic polyatomic systems

Application to the OH* and H,O" ions

e Accurate determination of the abundance of reactive molecules in the interstellar medium
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Context
Physical conditions in astrophysical media are derived from
spectral line analysis
— Requiresthe population of molecular energy levels
* Local thermodynamic equilibrium conditions rarely fulflled
— Need of radiative and collsional molecular data
% ize transitions induced by

raction potential between the colliders
tential energy surface (PES)
2. Scattering calculations based on the PES

— Inclastic cross scctions and rate coefficients

Potential energy surface

* UCCSD(TYaVQZ level of theory us

* Heis one of the dominant collider and a proxy for H

« First PES for the CCS-He system
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Conclusions and Perspetives
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