Dense core formation in the turbulent, magnetized Pipe Nebula

PCMI Symposium - 2022

Simon Delcamp
PhD student
simon.delcamp@univ-grenoble-alpes.fr

Advisors: Pierre Hily-Blant
Outline of the talk

1. The Pipe Nebula

2. Large-scale gas kinematic properties

3. The low-extinction dense core population

4. Conclusions and perspectives
The Pipe Nebula: a molecular cloud with low star formation efficiency

- In the Ophiuchus region, low latitude; observable with IRAM and ALMA

- Nearby: 163±5 pc (Dzib+18, Gaia DR2)

- Star formation limited to the B59 region
Strong magnetic field

- Overall morphology: B-lines perpendicular to the Pipe filament on 20 pc scale
- Dispersion is largest in B59, and smallest in the Bowl
- Projected magnetic field intensity based on Davis-Chandrasekhar-Fermi: 17, 30, and 65 μG in B59, Stem, and Bowl (Alves+08)

Franco+10, polarization angles on an extinction map
The dense core mass function of the Pipe Nebula

- Dense core population identified based on wavelet decomposition in 2MASS extinction map (Lombardi+06)
- Genetic link between the Initial Mass Function and the Core Mass Function (Motte+98, Alves+07)
- Core-to-star formation efficiency = 0.40±0.20
- Generalized to Gould Belt star forming clouds (HGBS Herschel key program, André+10, Könyves+15)
New Observations

Large-scale 12CO(1-0) map with IRAM-30m
A large 12CO(1-0) map of a strongly dynamical, magnetized region

- Field of view located in a region where two velocity structures, proposed to be converging flows (Muench+07, Frau+10)
- The largest 12CO(1-0) map (0.5x0.7deg or 1.4pc x 2.0pc) at 22" (~3500 au) of the Pipe Nebula
- A_V covering 0.5-5 mag over the field of view
- Complemented by pointed, multi-line observations of eight cores candidates from Rathborne+09 catalog: 13CO(1-0), 12CO(2-1), 13CO(1-0), C18O(1-0)

- **Primary aims**
 - Analyse the orientation of structures with respect to magnetic fields
 - Determine the physical conditions and properties of dense cores in the region of converging flows

Extinction map, Hasenberger+18, based on Herschel+Planck

Column density $N(H_2)$ computed from extinction map of Hasenberger+18
Connected, large-scale velocity components

- Two velocity components (~3.5 and 5.0 km/s)
 - known from Onishi+99
 - Identified as converging flows (Muench+07, Frau+10)
- Connected in velocity space
- **Field of view in an interaction region**
A wealth of small-scale structures in velocity channels

- Large scales (FoV=1.4pcx2pc)
 - Velocity component at 6.0 km/s: almost parallel to B_{proj}
 - Velocity component at 3.5 km/s: brightest and unrelated to B_{proj}

- Small scales
 - Elongated structures are visible in most velocity channels, from 2.5 to 7.5 km/s
 - Eye-identification in velocity channels as elongated (aspect ratio > 2), structures spanning > 4 channels
 - Narrow filamentary structures: FWHM down to 0.06 pc

Intensity (K) at a given velocity (km/s). Magnetic field orientation indicated by a purple line
Structures in transitions

- Preliminary results
 - low-brightness structures, rather aligned with B_{proj}
 - 50% aligned or perpendicular
 - 50% neither aligned nor perpendicular

➢ Probing the transition from aligned to perpendicular?

Intensity (K) at a given velocity (km/s). Magnetic field orientation indicated by a purple line.
A new estimate for the magnetic field intensity

- **Skalidis+21**, magnetic field intensity:

 \[B_0 = 123 \mu G \sqrt{2\pi} \left(\frac{\rho}{3.04 \times 10^{-21} \text{g cm}^{-3}} \right)^{1/2} \left(\frac{\delta V}{1.70 \times 10^5 \text{cm/s}} \right) \left(\frac{3.65^\circ}{\delta \phi} \right)^{1/2} \]

 - Uncertainty due to measures = 5 \(\mu \text{G} \)

- **Ostriker+01**, Mach number:

 \[M = 2.39 \left(\frac{\delta \varpi}{1.7 \times 10^5 \text{cm/s}} \frac{2.97 \times 10^4 \text{cm/s}}{c_s} \right)^{1/2} \]

 - Uncertainty due to measures = 0.57

- Region with a medium to strong magnetic field

Franco+10, polarization angles on an extinction map
 Variety of line profiles
- Multiple velocity components in C18O(1-0): RAT43, RAT49, RAT51
- Broad 12CO emission with undetected counterparts in 13CO and C18O: RAT51, RAT54, RAT56, RAT57
- Extended 12CO with weak 13CO and undetected C18O: RAT46, RAT55

 Dense and/or evolved gas tracers not detected: HCN and N$_2$H$^+$

➢ Are these local maxima of extinction really dense cores or false positives?
Gas column density estimations

- Multi-component Gaussian fit to C18O(1-0) emission line profiles
- Simplifying assumptions
 - Assuming same T\textsubscript{ex} for all lines and homogeneous along line of sight
 - Gaussian C18O opacity profile
 - No fractionation: 12CO/13CO=70, 12CO/C18O=500, 13CO/C18O=7
- Results
 - C18O(1-0) center line opacity: 0.03±0.02 < tau\textsubscript{18} < 0.64±0.04
 - 12CO column density: 7.1±2.4 \times 1015 < N(C18O)x500[cm-2] < 8.8±0.6 \times 1017
 - CO/H=8.3\times10-5; N\textsubscript{H} = 8.6\times1019 to 1.1\times1022 cm-2 or A\textsubscript{V}=0.05 to 5.7 mag
 - Core sample not representative of usual cores (A\textsubscript{V}~10 mag): young starless cores or transients?

\begin{center}
\includegraphics[width=\textwidth]{extinction_map.png}
\end{center}
Implication to the CMF

- High uncertainties on dense cores masses estimated from dust extinctions

- Implications to the break of the CMF!
Conclusions and perspectives

- First large-scale map 1.4pc x 2.0 pc at 22'' angular resolution of a highly dynamic, non star-forming region in the Pipe molecular cloud
- Two velocity components: first clear evidence of connection in velocity space
- Wealth of small-scale, elongated features, in \(^{12}\)CO(1-0) channel maps
 - Preliminary results from eye-inspection in x-y-v cubes: ~40% aligned, ~10% perp, ~50% neither aligned or perp
 - Probing the formation of filamentary structures in the interaction region two (converging ?) flows
- Dense cores from previous studies
 - \(A_V\) from 0.05 to 5.7 mag for each velocity component separately: extinction peaks and projection effects
 - Transient structures?

- Characterisation of the filaments (density estimations, large-scale coherence)
- Dense core candidates
 - Constrain evolutionary stage with early/late type species (see also Frau+12)
 - New estimates of the mass from dust and gas

Thank you for your attention