Dense core formation in the turbulent, magnetized Pipe Nebula

PCMI Symposium - 2022

Simon Delcamp PhD student simon.delcamp@univ-grenoble-alpes.fr

Advisors: Pierre Hily-Blant

Outline of the talk

1. The Pipe Nebula

2. Large-scale gas kinematic properties

3. The low-extinction dense core population

4. Conclusions and perspectives

The Pipe Nebula : a molecular cloud with low star formation efficiency

- In the Ophiuchus region, low latitude; observable with IRAM and ALMA
- Nearby: 163±5 pc (*Dzib*+18, *Gaia DR2*)

Star formation limited to the B59 region

Strong magnetic field

- Overall morphology: B-lines perpendicular to the Pipe filament on 20 pc scale
- Dispersion is largest in B59, and smallest in the Bowl
- Projected magnetic field intensity based on Davis-Chandrasekhar-Fermi: 17, 30, and 65 muG in B59, Stem, and Bowl (Alves+08)

The dense core mass function of the Pipe Nebula

- Dense core population identified based on wavelet decomposition in 2MASS extinction map (Lombardi+06)
- Genetic link between the Initial Mass Function and the Core Mass Function (Motte+98, Alves+07)
- Core-to-star formation efficiency = 0.40±0.20
- Generalized to Gould Belt star forming clouds (HGBS Herschel key program, André+10, Könyves+15)

New Observations

Large-scale ¹²CO(1-0) map with IRAM-30m

A large ¹²CO(1-0) map of a strongly dynamical, magnetized region

- Field of view located in a region where two velocity structures, proposed to be converging flows (Muench+07, Frau+10)
- The largest ¹²CO(1-0) map (0.5x0.7deg or 1.4pc x 2.0pc,) at 22" (~3500 au) of the Pipe Nebula
- A_V covering 0.5-5 mag over the field of view
- Complemented by pointed, multi-line observations of eight cores candidates from Rathborne+09 catalog: ¹²CO(1-0), ¹²CO(2-1), ¹³CO(1-0), C¹⁸O(1-0)

Primary aims

- Analyse the orientation of structures with respect to magnetic fields
- Determine the physical conditions and properties of dense cores in the region of converging flows

Connected, large-scale velocity components

- Two velocity components (~3.5 and 5.0 km/s)
 - known from Onishi+99
 - Identified as converging flows (Muench+07, Frau+10)
- Connected in velocity space
- Field of view in an interaction region

A wealth of small-scale structures in velocity channels

- Large scales (FoV=1.4pcx2pc)
 - Velocity component at 6.0 km/s: almost parallel to B_{proj}
 - Velocity component at 3.5 km/s: brightest and unrelated to B_{proj}
- Small scales
 - Elongated structures are visible in most velocity channels, from 2.5 to 7.5 km/s
 - Eye-identification in velocity channels as elongated (aspect ratio > 2), structures spanning > 4 channels
 - Narrow filamentary structures: FWHM down to 0.06 pc

Structures in transitions

Preliminary results

- low-brightness structures, rather aligned with B_{proj}
- 50% aligned or perpendicular
- 50% neither aligned nor perpendicular

> Probing the transition from aligned to perpendicular?

Intensity (K) at a given velocity (km/s). Magnetic field orientation indicated by a purple line

A new estimate for the magnetic field intensity

Franco+10, polarization angles on an extinction map

• *Skalidis+21*, magnetic field intensity:

$$B_0 = 123\mu G\sqrt{2\pi} \left(\frac{\rho}{3.04 \times 10^{-21} \mathrm{g \, cm^{-3}}}\right)^{1/2} \left(\frac{\delta V}{1.70 \times 10^5 \mathrm{cm/s}}\right) \left(\frac{3.65^{\circ}}{\delta \phi}\right)^{1/2}$$

> Uncertainty due to measures = 5
$$\mu$$
G

• *Ostriker+01*, Mach number:

$$M = 2.39 \left(\frac{\delta v}{1.7 \times 10^5 \text{cm/s}} \frac{2.97 \times 10^4 \text{cm/s}}{\text{c}_{\text{s}}} \right)^{1/2}$$

> Uncertainty due to measures = 0.57

Region with a medium to strong magnetic field

Dense cores with multiple velocity components

- Variety of line profiles
 - Multiple velocity components in C¹⁸O(1-0): **RAT43, RAT49, RAT51**
 - Broad ¹²CO emission with undetected counterparts in ¹³CO and C¹⁸O: RAT51, RAT54, RAT56, RAT57
 - Extended ¹²CO with weak ¹³CO and undetected C¹⁸O: RAT46, RAT55
- Dense and/or evolved gas tracers not detected: HCN and $N_{2}\mathrm{H^{+}}$

> Are these local maxima of extinction really dense cores or false positives?

Gas column density estimations

- Multi-component Gaussian fit to C¹⁸O(1-0) emission line profiles
- Simplifying assumptions
 - Assuming same $T_{\rm ex}$ for all lines and homogeneous along line of sight
 - Gaussian C¹⁸O opacity profile
 - No fractionation: ¹²CO/¹³CO=70, ¹²CO/C¹⁸O=500, ¹³CO/C¹⁸O=7
- Results
 - C¹⁸O(1-0) center line opacity: $0.03 \pm 0.02 < tau18 < 0.64 \pm 0.04$
 - ¹²CO column density: $7.1 \pm 2.4 \text{ x} 10^{15} < N(C^{18}O)x500[\text{cm}^{-2}] < 8.8 \pm 0.6 \text{ x} 10^{17}$
 - CO/H=8.3x10^-5; $N_{\rm H}$ = 8.6x10^{19} to $1.1x10^{22}\,\text{cm}\text{-}2$ or $A_V\text{=}0.05$ to 5.7 mag
 - > Core sample not representative of usual cores ($A_V \sim 10$ mag): young starless cores or transients?

ID	Alves et al. (2007) M_{\odot}	Rathborne et al. (2009) M_{\odot}	Román-Zúñiga et al. (2010) M_{\odot}	100 c	MF and IMF, <i>Alves+07</i>	,	
43	3.2	1.2	0.58	ŀ		1 .	-
46	9.6	5.6	4.90	ŀ		¶~~~↓	-
49	2.6	0.8	0.61		Ŷ		-
51	5.9	4.6	2.03			le l	
54	7.3	0.9	0.39	ŀ			-
55	7.3	2.2	1.70	ISS		No. No.	
56	1.2	0.4	_	Ма	IM		
57	5.0	2.8	2.52	dN / dlog Mass 0			
	 High uncertainties on dense cores masses estimated from dust extinctions 						
≻ Implications to the break of the CMF !				1	0.1	1.0 10	

Mass (M_{sun})

Conclusions and perspectives

- First large-scale map 1.4pc x 2.0 pc at 22" angular resolution of a highly dynamic, non star-forming region in the Pipe molecular cloud
- Two velocity components: first clear evidence of connection in velocity space
- Wealth of small-scale, elongated features, in ¹²CO(1-0) channel maps
 - Preliminary results from eye-inspection in x-y-v cubes: ~40% aligned, ~10% perp, ~50% neither aligned or perp
 - Probing the formation of filamentary structures in the interaction region two (converging ?) flows
- Dense cores from previous studies
 - A_V from 0.05 to 5.7 mag for each velocity component separately: extinction peaks and projection effects
 - Transient structures?
- Characterisation of the filaments (density estimations, large-scale coherence)
- Dense core candidates
 - Constrain evolutionary stage with early/late type species (see also Frau+12)
 - > New estimates of the mass from dust and gas

Thank you for your attention