

SCIENCES SORBONNE UNIVERSITÉ

Xavier Michaut, Franck Le Petit, Evelyne Roueff, Jacques Le Bourlot, Mathieu Bertin, Jean-Hugues Fillion, Pascal Jeseck, Darek Lis, Alexandre Faure, Pierre Hily-Blant, Emeric Bron

Influence of nuclear spin conversion of H₂ molecules on the chemistry of the interstellar medium - Experiment and modelling

Japhar Michoud

ORTHO TO PARA RATIO (OPR) IN THE INTERSTELLAR MEDIUM (ISM)

Why look at the OPR in the ISM?

 $f = f = \frac{1}{2} \int \frac{1}{2$

 $OPR = 2.59 \pm 0.13$ Bonev and al. Icarus 222 (2013)

 $OPR = 3.2 \pm 0.1$ N. Flagey and al. ApJ 762 11 (2013)

OPR = 0.2 - 0.5Y. Choi and al. A&A 572 L10 (2014)

ORTHO TO PARA RATIO (OPR) IN THE INTERSTELLAR MEDIUM (ISM)

Why look at the OPR in the ISM?

 $\mathcal{A}_{\mathcal{A}}$ Impact on the chemistry of the ISM?

 $OPR = 2.59 \pm 0.13$ Bonev and al. Icarus 222 (2013)

 $OPR = 3.2 \pm 0.1$ OPR = 0.2 - 0.5N. Flagey and al. ApJ 762 11 (2013) Y. Choi and al. A&A 572 L10 (2014) ONE OF THE LOWEST OPR VALUES REPORTED IN THE ISM

MEUDON PDR CODE (Photo Dissociated Region)

PDR CODE :

- Computes the atomic and molecular structure of interstellar clouds.
- Analysis of physical and chemical processes

MAIN PARAMETERS :

- G₀ (UV intensity radiation field), stellar spectrum
- Density, pressure, user profile density : clumps
- Metallicity and elemental abundances
- Cosmic ray ionisation rate
- Grain properties

- Abundances of hundreds species
- Excitation in levels
- Gas & grains temperatures
- Intensities (H_2 , CO, H_2O , ...)
- Column densities of species

Why the study of H_2 is so important for the interstellar medium? H_2 is the most abundant molecule in the interstellar medium A_{p} For a given reaction, the reaction rate may be different depending on whether H₂ is ortho or para (Dislaire et al A&A 537, A20 (2012))

 \implies The OPR of H₂ can have a great impact on the chemistry

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Why the study of H_2 is so important for the interstellar medium? H_2 is the most abundant molecule in the interstellar medium A For a given reaction, the reaction rate may be different depending on whether H₂ is ortho or para (Dislaire et al A&A 537, A20 (2012))

 \implies The OPR of H₂ can have a great impact on the chemistry

Gas Phase

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Surface +Nhv Ws-0 Ş The second seco S-0, s-OH +Nhv Ws-H₂O MN₹ MM H, H₂ H, H_2 s-HO₂ s-H₂O AN hv W-**Grain Surface**

Why the study of H_2 is so important for the interstellar medium? H_2 is the most abundant molecule in the interstellar medium A_{p} For a given reaction, the reaction rate may be different depending on whether H₂ is ortho or para (Dislaire et al A&A 537, A20 (2012))

 \implies The OPR of H₂ can have a great impact on the chemistry

Gas Phase

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Surface +Nhv Ws-0 Ş The second seco S-0, s-OH +Nhv Ws-H₂O MN₹ MM H, H₂ H, H_2 s-HO₂ s-H₂O AN hv W-**Grain Surface**

Why the study of H_2 is so important for the interstellar medium? H_2 is the most abundant molecule in the interstellar medium A_{p} For a given reaction, the reaction rate may be different depending on whether H₂ is ortho or para (Dislaire et al A&A 537, A20 (2012))

 \implies The OPR of H₂ can have a great impact on the chemistry

Gas Phase

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Surface +Nhv Ws-0 Ş S-0, s-OH -₩hv W-MN ₹ MV H, H₂ H, H_2 s-HOs-H₂O +Nhv W-**Grain Surface**

PROCESSES THAT GOVERN THE ORTHO TO PARA RATIO IN THE PDR CODE

(i) Chemistry

(ii) Excitation

(i) Chemistry

Chemical equation :

 $A + X - o \longrightarrow B + C \quad k_1$

Differential equations for X specie :

 $\frac{dn(X)}{dt} = -k_1 n(A) f_X^o n(X)$

Modification of reaction rates depending on the ortho / para aspect of the species

PROCESSES THAT GOVERN THE ORTHO TO PARA RATIO IN THE PDR CODE

Modification of reaction rates depending on Example the ortho / para aspect of the species

- $dn(H_3^+,i)$ dt

(ii) Excitation

Different processes that populate and depopulate a i-level for a given specie :

- Radiative processes Collisional processes Formation processes
 - Destruction processes

Energy levels for a given species

e for H₃⁺ with two equations :
$$\begin{cases} H_2^+ - o + H_2 - o \longrightarrow H_3^+ - p + H & k \\ H_3^+ - p + e^- \longrightarrow H_2 - p + H & k \end{cases}$$

- The excitation is calculated for 4 ortho/para species : H_2 , H_2O , H_2O^{18} and H_3^+ - X-o and X-p are not chemical species in the PDR code - The excitation computation in quantum states is only made for the X specie

The population X-o and X-p are finally deduced from this computation

COMPARISON BETWEEN TWO MODELS WITH AND WITHOUT ORTHO PARA CHEMISTRY

Tested model : Diffuse cloud

PDR without ortho/para chemistry			PDR with ortho/para chemistry			
				cm^3s^{-1}	β	
			$H_2^+ - o + H_2 - o \longrightarrow H_3^+ - p + H$	$7.57 \cdot 10^{-10}$	-0.06	
	2 1		$H_2^+ - o + H_2 - o \longrightarrow H_3^+ - o + H$	$1.51 \cdot 10^{-9}$	-0.06	
cm^3s^{-1}			$H_2^+-p + H_2^-o \longrightarrow H_3^+-p + H$	$1.51 \cdot 10^{-9}$	-0.06	
	α	β	$H_2^+-p + H_2^o \longrightarrow H_3^+-o + H$	$7.57 \cdot 10^{-10}$	-0.06	
$H_2^+ + H_2 \longrightarrow H_3^+ + H$	$2.27 \cdot 10^{-9}$	-0.06	$H_2^+-o + H_2-p \longrightarrow H_3^+-p + H$	$1.51 \cdot 10^{-9}$	-0.06	
$H_2 + crp \longrightarrow H_2^+ + e^-$	$9.6 \cdot 10^{-1}$	0.00	$H_2^+ - o + H_2 - p \longrightarrow H_3^+ - o + H$	$7.57 \cdot 10^{-10}$	-0.06	
			$H_2^+-p + H_2-p \longrightarrow H_3^+-p + H$	$2.27 \cdot 10^{-9}$	-0.06	
			$H_2-o + crp \longrightarrow H_2^+-o + e^-$	$9.6 \cdot 10^{-1}$	0.00	
			$H_2-p + crp \longrightarrow H_2^+-p + e^-$	$9.6 \cdot 10^{-1}$	0.00	

$$H_2^+ - p + H_2^-$$
$$H_2^- o + crp$$

 $k = \alpha \left(\frac{T}{300}\right)^{\nu} e^{-\gamma/T}$

 $\gamma = 0$

T. Oka, J. Mol. Spectr. 228 (2), 635-639 (2004) K.N. Crabtree, and al. Atrophys. J. 729 (1), 15 (2011)

COMPARISON BETWEEN TWO MODELS WITH AND WITHOUT ORTHO PARA CHEMISTRY

Excitation temperature of H₂ deduced :

-Without ortho/para chemistry $(T_{01} = 63.565 K)$

-With ortho/para chemistry $T_{01} = 63.583 K$

Decrease of the H_3^+ excitation temperature

Good agreement with H_3^+ and H_2 temperatures observed in the ISM

Quantity	Units	ζ Per ^{a, b}	X Per ^{a, c}	HD 154368 ^c	HD 73882 ^c	HD 110432 ^{c, d}
			H_3^+ Results			
N(1, 1)	$(10^{13} \text{ cm}^{-2})$	4.09 ± 0.53	3.34 ± 0.69	7.43 ± 1.24	6.08 ± 0.12	3.11 ± 0.05
N(1, 0)	$(10^{13} \text{ cm}^{-2})$	2.53 ± 0.29	$3.29~\pm~0.45$	2.83 ± 0.74	$2.94~\pm~0.48$	2.11 ± 0.17
p_3^{e}		$0.62~\pm~0.04$	0.50 ± 0.06	$0.72~\pm~0.06$	$0.67~\pm~0.04$	0.60 ± 0.02
$T(\mathrm{H}_3^+)$	(K)	28 ± 4	46^{+21}_{-13}	20 ± 4	23 ± 3	30 ± 2
			H ₂ Results			
$\log[N(0)]$	(cm^{-2})	20.51 ± 0.09	20.76 ± 0.03	21.04 ± 0.05	20.99 ± 0.08	20.40 ± 0.03
$\log[N(1)]$	(cm^{-2})	20.18 ± 0.09	$20.42~\pm~0.06$	20.54 ± 0.15	20.50 ± 0.07	20.27 ± 0.04
p_2^{f}		0.68 ± 0.06	$0.69~\pm~0.04$	0.76 ± 0.07	0.76 ± 0.05	0.57 ± 0.03
T_{01}	(K)	58 ± 6	57 ± 4	51 ± 8	51 ± 6	68 ± 5

K.N. Crabtree, and al. Atrophys. J. 729 (1), 15 (2011)

Excitation temperature of H_3^+ deduced :

-Without ortho/para chemistry : $T(H_3^+) = 47.860 K$

-With ortho/para chemistry : $T(H_3^+) = 25.965 K$

More results on H₃⁺ temperature in Le Bourlot et al. (coming very soon)

ORTHO-PARA SELECTIVITY OF H₂ OF DESORPTION PROCESSES

Behaviour of the nuclear spin isomers at the solid-gas interface ?

NUCLEAR SPIN CONVERSION (NSC) DYNAMICS ON SURFACES

Molecular hydrogen on ASW

NSC in presence of O_2 traces

Molecular Hydrogen Diffusion

At 10K

02	t (min) IR Vib	t (min) Laser FORMOLISM (1)	t (min) Laser Sugimoto (2)	t (min) Laser <i>Ueta</i> (3)	
0.2 %		H ₂ : 3.7 (1) D ₂ : 11 (1)			
0.1 %	H ₂ : 30 (2)				
0.02 %		D ₂ : 51 (4)			
0 %	H ₂ : 220 (17)	H ₂ : >300	H ₂ : 8 (2) D ₂ : 49 (38)	H ₂ : 52 (5)	
Coverage	1ML	0.3 - 0.75 ML	1 - 2 ML	0.3 - 1 ML	

(1) Chehrouri, Fillion et al PCCP 2011 **ERMA**

- (2) Sugimoto & Fukutani Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi PRL 2016

Solid H₂ at 4 K : 1.5 days Gas H₂ (2 bars, 293K) : 12.8 days (DG)

COSPINU2

Methods :

Experimental set-up under Ultra High Vacuum chamber (3.10⁻¹⁰ mbar) at low temperature (6K) to produced controlled icy films coated with H₂ isotopologues

COSPINU2

Equivalent to 1000 ML of compact ices H₂O amorphous and porous

> Use of a special depostion technique to produce thick ices without destroying the background vacuum. Allows to avoid redeposition during the duration of the experiment.

Cu polycristallin, T = 9-10 K

Surface (interface H₂O – vacuum) saturated with H₂ Equivalent to 1000 ML of compact ices H₂O amorphous and porous

Fourier Transform IR spectroscopy (RAIRS)

Cu polycristallin, T = 9-10 K

Surface (interface H₂O – vacuum) saturated with H₂ Equivalent to 1000 ML of compact ices H₂O amorphous and porous

Equivalent to 1000 ML of compact ices H₂O amorphous and porous saturated with H₂. IR spectrum in the spectral range 4050-4200 cm⁻¹ obtained with COSPINU2

Equivalent to 1000 ML of compact ices H₂O amorphous and porous saturated with H₂. IR spectrum in the spectral range 4050-4200 cm⁻¹ obtained with COSPINU2

Equivalent to 1000 ML of compact ices H₂O amorphous and porous saturated with H₂. IR spectrum in the spectral range 4050-4200 cm⁻¹ obtained with COSPINU2

Gas phase

Q(0) line 4159.5 cm⁻¹ Q(1) line 4153.4 cm⁻¹

Solid n-H₂

Q(0) line 4153.0 cm⁻¹ Q(1) line 4146.8 cm⁻¹

Equivalent to 1000 ML of compact ices H₂O amorphous and porous saturated with H₂. IR spectrum in the spectral range 4050-4200 cm⁻¹ obtained with COSPINU2

- Equivalent to 1000 ML of compact ices H₂O amorphous and porous saturated with H₂ at 10K
- IR spectrum in the spectral range 4050-4200 cm⁻¹ obtained with COSPINU2
- is twice the width of the Q(0)

- Fitting procedure to be improved to correct better the baseline. Only the intensities are fitted up to now. Width of the Q(1) line

Equivalent to 1000 ML of compact ices H_2O amorphous and porous saturated with H_2 at 10K Time evolution of the fractional populations of the two species

n(ortho) n(para)

Characteristic time : 390 ± 40 minutes

_	t (min) IR Vib	t (min) Laser FORMOLISM (1)	t (min) Laser Sugimoto (2)	t (min) Ueta	
	H ₂ : 220 (17)	H ₂ : >300	H ₂ : 8 (2)	H ₂ : 5	
	1ML	0.3 - 0.75 ML	1 - 2 ML	0.3 -	

Same order of magnitude for the characteristic time of nuclear spin conversion

(1) Chehrouri, Fillion et al PCCP 2011 **ERMA**

(2) Sugimoto & Fukutani Nature Physics 2011

(3) Ueta, Watanabe, Hama, Kouchi PRL 2016

1400

CONCLUSION

Modelisation :

- Same excitation temperature for H₂ with and without ortho/para chemistry
- Decrease of the temperature of H_3^+ with ortho/ para chemistry which is in good agreement with observations
- Next step : the oxygen chemistry to see the influence of H_2 on the production of ortho and para H_2O

Integrate the UGAN network (University of Grenoble Alpes Astrochemical network)

- Gas phase chemical reaction network
- Grain surface interaction
- Ortho/para aspect of the species

Reactional chain for water production in gas phase :

 $O^+ + H_2 \longrightarrow OH^+ + H$ $OH^+ + H_2 \longrightarrow H_2O^+ + H$ $H_2O^+ + H_2 \longrightarrow H_3O^+ + H$ $H_3O^+ + e^- \longrightarrow H_2O + H$

ORTHO/PARA CHEMISTRY

$$\begin{cases} O^+ + H_2 - o \longrightarrow OH^+ + H \\ O^+ + H_2 - p \longrightarrow OH^+ + H \end{cases}$$

 $\begin{cases} OH^+ + H_2 - o \longrightarrow H_2 O^+ - o + H \\ OH^+ + H_2 - o \longrightarrow H_2 O^+ - p + H \end{cases}$ $OH^{+} + H_2 - p \longrightarrow H_2O^{+} - o + H$ $OH^{+} + H_2 - p \longrightarrow H_2O^{+} - p + H$

$$\begin{cases} H_2O^+ - o + H_2 - o \longrightarrow H_3O^+ - o + H_2O^+ - o + H_2O^- - o \longrightarrow H_3O^+ - p + H_2O^+ - o + H_2O^- - p \longrightarrow H_3O^+ - o + H_2O^+ - o + H_2O^- - p \longrightarrow H_3O^+ - p - H_2O^+ - p + H_2O^- - p \longrightarrow H_3O^+ - p - H_3O^+ - p - H_2O^+ - p \longrightarrow H_3O^+ - p - H_3O$$

 $H_3O^+ - o + e^- \longrightarrow H_2O - o + H$ $\begin{cases} H_3O^+ - p + e^- \longrightarrow H_2O - o + H \\ H_3O^+ - p + e^- \longrightarrow H_2O - p + H \end{cases}$

+H+H+H+H+H+H+H

Experiment :

• The NSC of H2 on ASW has been studied with different techniques. The measurements we made with SPICES and COSPINU2 give characteristic times very close. There is a large discrepancy with the data collected in the literature.

• Measurements with COSPINU2 will be done on a large time scale to investigate the temporal dynamics and the temperature dependence of the NSC

• Development are in progress to investigate the link between the OPR of H_2 we measure in situ and the OPR when the molecules are released in the gas phase from the surface through thermal and non thermal processes.

AKNOWLEDGMENTS

Fundings

≭A**C**A∨

*** île**de**France**

AKNOWLEDGMENTS

X. Michaut, F. Le Petit, R. Basalgète, T. Putaud, M. Bertin, J.-H. Fillion, G. Féraud, L.Philippe, P. Jeseck, P. Marie-Jeanne, C. Rouillé, F. Le Petit, E. Bron, E. Roueff, J. Le Bourlot, D. Lis

Alexandros Milpanis (M2 student)

Maya Lemaître (M2 student)

Chloé Pénélaud (L3 Student) Delfina Toulouse (M2 student)

Thank you for your attention !

