Inferring physical conditions in star forming regions with new Bayesian approach and spatial regularization

P. Palud, F. Le Petit, E. Bron, P. Chainais, P.-A. Thouvenin, consortium Orion B

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Université de Lille

Point of the presentation

Effect of **radiative feedback** on parent cloud \downarrow

Efficient estimation of **physical conditions** in **star forming region**

Carina nebula

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Pillars of creation

Source: <u>https://www.nasa.gov/</u>

Example: the OrionB cloud

Observations led by **OrionB Consortium**, (Pety et al., 2016)

> **Very rich dataset!** $\simeq 10^6$ pixels $\simeq 100 \text{ pc}^2$ tens of lines

Great variations of SNR

- \implies Between pixels
- \implies Between lines

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Source: IRAM-30m, J.Pety, M. Guerin, consortium Orion-B

Estimation procedure

Physical Parameters $T, G_0, n_H, \zeta, \dots$

(Grid of) Physical model predicts

Predicted observations

Carina nebula

PIERRE PALUD - PCMI OCTOBER 25TH 2022

(Wu et al., 2018)

Carina nebula

PIERRE PALUD - PCMI OCTOBER 25TH 2022

(Wu et al., 2018)

 $\log_{10} G_0$

 $\log_{10} P_{th}$

Example: the OrionB cloud

For better estimations:

- \implies Spatial regularization
- \implies uncertainty quantification
- \implies Fast

Method evaluated on a synthetic PDR map

Source: IRAM-30m, J.Pety, M. Guerin, consortium Orion-B

Photo-Dissociation Region (PDR)

Neudon PDR code

Parameters:

- P_{th} thermal pressure
- G_0 intensity of radiative field (in Habing units)
- A_V visual extinction

Code:

Iteratively Solves large set of partial differential equations

Observation:

Integrated intensities of a line

CHEMISTRY

RADIATIVE TRANSFER

Synthetic PDR map

10

Bayesian approach

A posteriori probability distribution $\mathbb{P}[(P_{th}, G_0, A_V) | Y]$

A posteriori

Complex distribution \implies impossible to extract estimators as is

 \implies sample from it with **MCMC algorithm**

Inference with **credibility intervals** More complete description of parameter space

$\mathbb{P}[(P_{th}, G_0, A_V) | Y] \propto \mathbb{P}[Y | (P_{th}, G_0, A_V)] \mathbb{P}[(P_{th}, G_0, A_V)]$ Likelihood **Spatial prior**

Observation model

If detected: $y_{n,\ell} = \epsilon_{n,\ell}^{(m)} f_{\ell}(\theta_n) + \epsilon_{n,\ell}^{(a)}$ Otherwise: $y_{n,\ell} \leq \omega$

With

- $y_{n,\ell}$: actual observation
- $f_{\ell}(\theta_n)$: predicted observation
- $\epsilon_{n,\ell}^{(m)}$: multiplicative noise
- $\epsilon_{n,\ell}^{(a)}$: additive noise
- ω : telescope detectability limit

How to deal with expensive numerical code f?

Approximation of f(e.g., with a neural network)

How to deal with **both** additive and multiplicative noises?

Approximation of likelihood

SNR	Noise model
Low	Additive
High	Multiplicative
Intermediate	Mixture

Spatial Regularization

Spatial Regularization

\simeq adaptive stacking

Should be close to the average of

Neighbour of

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Not smooth \implies High penalty \mathbf{X}

Spatial Regularization

\simeq adaptive stacking

Neighbour of

Should be close to the average of

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Not smooth \implies High penalty \checkmark

Markov Chain Monte Carlo

Some Gaussian Mixture How to explore all modes?

Monte Carlo Markov Chain

Some Gaussian Mixture How to explore all modes?

PIERRE PALUD - PCMI OCTOBER 25TH 2022

PMALA transition kernel Fast local exploration

_th	G_0
ned	Well constrained
DS	Small steps

Monte Carlo Markov Chain

Some Gaussian Mixture How to explore all modes?

PIERRE PALUD - PCMI OCTOBER 25TH 2022

PMALA transition kernel Fast local exploration

_th	G_0
ned	Well constrained
DS	Small steps

Illustration on Gaussian mixture

10^{6} 10^{5} 10^{4} G_0 -10^{2} 10^{0} -10¹ A_V

 P_{th}

True values

 10^{8}

 10^{7}

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Credibility Intervals

23

Application to real data: NGC 7023

One of the most studied PDR

Close to us ($\sim 320~{\rm pc}$)

Edge-on geometry

Illuminated by a spectroscopic binary system (B3Ve and B5)

Previous estimations:

 $G_0 \simeq 2600$ (Habing units) (Chokshi et al., 1988) $P_{th} \simeq 10^8$ K cm⁻³ (Joblin et al., 2018) $A_V^{tot} \simeq 10$ mag (Joblin et al., 2018)

24

Sampling results

Conclusion

- New tool ready to be used! \implies will be available on <u>ism.obspm.fr</u>
 - **Spatial regularization** \rightarrow enforces spatial smoothness
 - **Bayesian approach** \rightarrow provides both estimates and credibility intervals
- Applications:
 - synthetic case with 4096 pixels 🗸
 - NGC 7023 (1 pixel)
 - Real data (Horse Head, $\simeq 10^3$ pixels / Orion B $\simeq 10^6$ pixels)
 - JWST observations

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Appendix

28

Some formulae

Spatial prior

$$\|\Delta\Theta_{\cdot d}\|_2^2 = \sum_{n=1}^N \sum_{i \in V_n} (\theta_{n,d} - \theta_{i,d})^2$$

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Likelihood approximation

Classic observations: $10^0 - 10^2$ **pixels**

PIERRE PALUD - PCMI OCTOBER 25TH 2022

(Wu et al., 2018)

30

Wider maps: towards $10^3 - 10^6$ pixels

Source: https://www.esa.int/ESA_Multimedia/Sets/Webb_First_Images/(result_type)/images

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Source: https://www.esa.int/ESA_Multimedia/Sets/Webb_First_Images/(result_type)/images

Degeneracies and multimodality

Saturation of CO lines with AV

PIERRE PALUD - PCMI OCTOBER 25TH 2022

Multimodality with HCO+

Identical observations

32

comparison of f(x) and y distributions

33