Emerging molecular complexity in the warm gas of young protostars

Laure Bouscasse

IRAM

T. Csengeri, A. Belloche, F. Wyrowski, S. Bontemps, R. Güsten, K. M. Menten

Hot cores: molecular richness

Chemical context

First detections of complex organic molecules (COMs, 6 or more atoms): hot cores

>15 COMs are detected in hot cores (Belloche et al.2013)

Hot corinos = hot cores in the low-mass regime (Ceccarelli et al. 2000)

Spectra towards NGC6334IRS1 (Bisschop et al. 2007)

What conditions determine the molecular richness?

Laure Bouscasse (IRAM)

Origin of the molecular complexity?

Chemical context

<u>Observations</u>: similarities between hot corinos and comets

 \rightarrow Chemical heritage?

Emergence of hot cores:

- Intensive studies on hot cores but not on the early-stages
- What are the physical and chemical processes in the star-forming gas?

What are the physical properties of the gas during the emergence of the hot cores and the early warm-up phase chemistry?

From clumps to cores: ATLASGAL to SPARKS

Only 6 objects out of >35 protostellar envelopes revealed to have a single object.

→ **Targeted sources**: isolated, massive and non fragmented hot core precursors

Best laboratories to study the warm-up phase chemistry:

- Physics of the gas through excitation studies
- Chemical composition towards all 6 sources

Spectral survey

Spectral survey with APEX

Large bandwidth:

- Several molecules
- Several transitions for each molecule

Frequency coverage of the 2 mm, 1 mm and 0.8 mm bands with APEX overlaid by the atmospheric transmission

Molecular diversity

Spectral survey of 206 GHz towards 6 objects (Bouscasse et al. in prep)

Line density: 5-26 lines/GHz above 3σ (102 lines/GHz above 4σ in Sgr B2, Belloche et al. 2013)

Methodology

Physical parameters

Six sources: a molecular diversity?

Carbonated Chains	O-bearing	N-bearing	Deuterated	S-bearing	COMs	Others
ССН	СО	CN	DCN	CS	CH₃OH	SiO
HC ₃ N	HCO⁺	HNC	DCO ⁺	OCS	CH ₃ SH	PN
CH₃CCH	H ₂ CO	HCN	HDO	H ₂ CS	CH ₃ OCHO	
c-C ₃ H ₂	H ₂ CCO	NO	HDCO	SO ₂	HC(O)NH ₂	
	НСО	N ₂ H+	HDCS	SO	CH ₃ OCH ₃	
		CH ₂ NH	DNC	NS	CH₃CHO	
		HNCO	N_2D^+	H ₂ S	CH ₃ COCH ₃	
		HCNH ⁺	CCD	HCS ⁺	C ₂ H ₅ OH	
				SO ⁺	CH₃CN	
				NS ⁺	C_2H_3CN	
				CCS	C_2H_5CN	

Molecular emission varies between the objects.

Largest differences: S-bearing molecules, deuterated molecules, COMs

Temperatures in the sample

Temperature of the COMs (except methanol and methyl cyanide) in the objects

- The **bulk of the gas** is still **cold**.
- The warm gas is traced only by CH₃OH, and CH₃CN in 3 objects.
- 3 sources have a well defined warm gas phase.
- Emergence of the warm gas phase.

Temperatures in the sample

Warm gas: comparison with models

Warm gas: physical parameters

Excitation temperature for all the molecules (Hot cores: Belloche et al. 2016, Rolffs et al. 2011, Hot corinos: Belloche et al. 2020) Temperature: similar to hot corinos

Warm gas: physical parameters

Excitation temperature for all the molecules (Hot cores: Belloche et al. 2016, Rolffs et al. 2011, Hot corinos: Belloche et al. 2020)

Sizes

- Our objects: 0.05pc
- Hot cores: 3000-5000au (Kurtz et al. 2000, Cesaroni et al. 2011)
- Hot corinos: 100-300 au (e.g. Bianchi et al. 2020, Belloche et al. 2020)

Warm gas: hot corino-like?

Relative abundances with dimethyl ether versus the ones from hot corinos (Belloche et al. 2020)

Warm gas: hot core-like?

Relative abundances with dimethyl ether versus the ones from hot cores (Widicus Weaver et al. 2017, Jorgensen et al. 2020)

Conclusions

Emergence of a warm gas phase (Bouscasse et al. 2022)

and in prep)

- Most of the gas is still cold
- COMs does not necesseraly desorb through thermal processes

Hot core precursors = embbeded hot corinos with a larger size

massive dense core large hot core UCHII region hot corino?

P C P

expanding HII region

Credit: T. Csengeri

Bouscasse et al. 2022, A&A, 632 Bouscasse et al. in prep, A&A Cold envelope: CH_3OH , CH_3CN , CH_3CHO , CH_3OCHO , CH_3OCH_3

> Warm envelope: CH_3OH , CH_3OCH_3 , CH_3OCHO , $HC(O)NH_2$, CH_3CN , C_2H_5CN , C_2H_3CN , CH_3SH

0.05pc