Cosmic rays in the interstellar medium

www.cnrs.fr

Stefano Gabici APC, Paris

gabici@apc.in2p3.fr

Astron Astrophys Rev (2022)30:4 https://doi.org/10.1007/s00159-022-00141-2

REVIEW ARTICLE

Low-energy cosmic rays: regulators of the dense interstellar medium

Stefano Gabici¹

Received: 15 February 2022/Accepted: 29 June 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 -> Cosmic rays are energetic particles hitting the Earth's atmosphere from outer space.
-> Most of them (90%) are protons.
-> Most people believe they are accelerated at supernova remnant shocks.

Cosmic ray sources: why is it so difficult?

We cannot do CR Astronomy.

Need for indirect identification of CR sources.

Solar modulation

Solar modulation

Solar modulation

Voyager probes

Voyager probes crossed the heliopause

~45 years after the launch, the CR detectors onboard still collect data!

An epic journey

The local interstellar spectrum of CRs

Electron spectrum in the local ISM

Gamma-rays from distant cosmic rays

How well we know the spatial distribution of cosmic rays throughout the Galactic disk?

see e.g.

Black&Fazio1973

see e.g.

Black&Fazio1973

a MC immersed in the CR sea emits γ -rays

see e.g.

Black&Fazio1973

Aharonian&Atoyan1996

if a CR source is present, the MC emits more $\gamma\text{-rays}$

see e.g.

Black&Fazio1973

Aharonian&Atoyan1996

McKee 1989

see e.g. Black&Fazio1973 Aharonian&Atoyan1996 McKee 1989

Herbst&Klemperer1973

- only cosmic rays can penetrate and drive the chemistry in the cloud
Molecular clouds as cosmic ray probes

-> filter all ionizing agents but (MeV) CRs

Molecular clouds as cosmic ray probes

 H_3^+ , HCO^+ , DCO^+ , OH^+ , H_2O^+ H_3O^+ ...

 H_3^+ , HCO^+ , DCO^+ , OH^+ , H_2O^+ H_3O^+ ...

 H_3^+ , HCO^+ , DCO^+ , OH^+ , H_2O^+ H_3O^+ ...

 H_3^+ , HCO^+ , DCO^+ , OH^+ , H_2O^+ H_3O^+ ...

Energy losses (mainly ionisation)

Energy losses (mainly ionisation)

Comparison with data (???)

Comparison with data (???)

CR sources within clouds?

-> what about starless cores? (see works by Padovani+)

Stochasticity of sources

<- position of known SNR in the MW</pre>

Ranasinghe & Leahy 2022

Phan+ 2021

Phan+ 2021

Phan+ 2021

Open questions on low energy CRs

We do not understand the origin of the ionisation rates measured in clouds.

Several questions need then to be answered.

- What induces the large ionisation rates observed in clouds?
- Are the spectra of low energy CRs measured in the local ISM representative of the entire Galaxy? Or, what is the spatial distribution of low energy CRs throughout the Galactic disk?
- Why are diffuse atomic and molecular clouds, despite their different column density, characterised by the same ionisation rate?
- Why is the ionisation rate so large in the Galactic centre region?

What are the sites of acceleration of the low energy CRs responsible for the ionisation of clouds? —> turbulent reaccelerating in clouds? (Gaches+)
Does the observed intensity of LECRs in the local ISM reflects the fact that we live in a special place in the Galaxy? —> Local Bubble? (Silsbee & Ivlev 2019)

The future (I): JWST

 $CR + H_2 \rightarrow CR + H_2^+ + e^$ $e^- + H_2 \rightarrow rovibrational line emission (IR)$

The future (I): JWST

v=0, J=0

CR pumping

UV + CR pumping

Padovani+ 2021

The future (II): Athena

cold gas irradiated by CRs —> Fe Ka line @6.4 keV

- tentative evidence from a number of SNRs

(Nobukawa+ 2018)

The future (III): MeV astronomy

The future (IV): SKA

Synchrotron radiation from low energy electrons

Padovani & Galli 2018

Merci!

Backup slides

Pioneering studies

Pioneering studies

Pioneering studies

for some reason, the Spitzer value became the standard reference

So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...

E (eV)

- O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...
- Non-homogeneous distribution of MeV CRs in the Galaxy? (see Cesarsky 1975 for a 10⁻¹ pioneering work)

So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance 10¹² Protons in the LISM argument seems quite solid... Maxwellian: $n = 0.1 \text{ cm}^{-3}$; $v = 26 \text{ km s}^{-1}$; T = 8500K10¹¹ Non-homogeneous distribution 10¹⁰ o V1 CRS 12/342-15/181 of MeV CRs in the Galaxy? 10⁹ Leaky-box model LIS 10⁸ (see Cesarsky 1975 for a 107 pioneering work) 10⁶ sr MeV)⁻¹ 10⁵ **O** CR acceleration inside 2016 $J=4.40e-03 E^{-1.5} e^{(-E/0.2)}$ 10⁴ molecular clouds? sec 10³ Intensity (cm² (turbulence -> Dogiel+,10² Cummings+ 10' protostars -> Padovani+) 10⁰ 10⁻¹ 10-2 10^{-3} 10-4

10⁻⁵

10-6

 $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ Energy (MeV)

So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) -> the flux balance 10¹² Protons in the LISM argument seems quite solid... Maxwellian: $n = 0.1 \text{ cm}^{-3}$; $v = 26 \text{ km s}^{-1}$; T = 8500 K1011 Non-homogeneous distribution 10¹⁰ o V1 CRS 12/342-15/181 of MeV CRs in the Galaxy? 10⁹ Leaky-box model LIS 10⁸ (see Cesarsky 1975 for a 107 pioneering work) 10⁶ sr MeV)⁻¹ 10⁵ **O** CR acceleration inside 2016 $J=4.40e-03 E^{-1.5} e^{(-E/0.2)}$ 10⁴ molecular clouds? sec 10³ Intensity (cm² (turbulence -> Dogiel+,10² Cummings+ 10¹ protostars -> Padovani+) 10⁰ Hidden (very low energy) 10⁻¹ 10-2 component in the CR spectrum? 10^{-3} 10-4 10⁻⁵ 10-6

> $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ Energy (MeV)

A cosmic ray carrot?

Recchia+ 2018

A cosmic ray carrot?

So?

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

(a)

SNR/MC associations in y-rays

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

shock/MC interaction

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

shock/MC interaction

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

Interaction versus escape: who's who?

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

W28

Vaupré et al 2014

Vaupré et al 2014

Vaupré et al 2014

W51*C*

color -> TeV gamma-rays (MAGIC) green -> CO

SiO emission->slow shock->shock-clump interaction?->downstream of SNR shock

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

W28: cosmic rays or X-rays?

W28: cosmic rays or X-rays?

W28: cosmic rays or X-rays?

proton spectrum $f_{\rm CR} \propto p^{-2.8}$ gammas produced by protons of energy $E\gtrsim 1~{
m GeV}$

fit with a

Conclusions (?)

Conclusions (?)

Conclusions (?)

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

(Real) conclusions

