Observations and models of interstellar magnetic fields from large to small scales

イロト イポト イヨト イヨト

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

> PCMI Symposium 2022 ENS Paris – 24-28 October, 2022

Outline

Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

Outline

Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

æ

Early history

• Alfvén (1937)

Cosmic-ray confinement implies
 "the existence of a magnetic field in interstellar space"

• Fermi (1949)

^{ISS} "The main process of [cosmic-ray] acceleration is due to [interstellar] magnetic fields ... The magnetic field in the dilute matter is ~ 5 μ G, while its intensity is probably greater in the heavier clouds"

- Hall; Hiltner (1949); Davis & Greenstein (1951)
 - Linear polarization of starlight
 - Bue to elongated dust grains aligned by an interstellar magnetic field

• Kiepenheuer (1950)

Galactic radio synchrotron emission

イロト イポト イヨト イヨト

Observational tools

- Polarization of starlight & dust thermal emission
 Due to dust grains → general (dusty) ISM
 - \mathbb{B}_{\perp} (orientation only)

Synchrotron emission

Produced by *CR electrons* \rightarrow general (CR-filled) ISM \mathbb{B}_{\perp} (strength & orientation)

• Faraday rotation

Caused by thermal electrons \rightarrow ionized regions \mathbb{B}_{\parallel} (strength & sign)

Zeeman splitting

Molecular & atomic *spectral lines* \rightarrow neutral regions $\blacksquare B_{\parallel}$ (strength & sign)

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Outline

Introduction

2 Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Outline

Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Physical concept

Dust grains tend to spin about their short axes & to align their spin axes with \vec{B}

This grain alignement leads to linear polarization

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization orientation

- Starlight attenuated by dust (optical) is polarized $\|\vec{B}_{\perp}\|$
- Dust thermal emission (infrared) is polarized $\perp \vec{B}_{\perp}$

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization fraction

$p \equiv \frac{P}{I}$

- Starlight attenuated by dust : $p \simeq \tau p_0 \cos^2 \gamma$
- Dust thermal emission : $p = p_0 \cos^2 \gamma$

 $\Rightarrow p_0 = p_{\max} F_{\text{align}} F_{\delta B}$

 $\vec{B} \in \text{PoS}$ $\left(\cos^2 \gamma = 1\right)$

 $\Rightarrow p = p_0$

 $\vec{B} \perp \text{PoS}$ $\left(\cos^2 \gamma = 0\right)$

 $\Rightarrow p = 0$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Credit: Vincent Guillet

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Dust polarization

Altogether

- Polarization orientation
- Polarization fraction

 \square orientation of \vec{B} in PoS

 \square inclination of \vec{B} to PoS

(for ideal conditions)

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization of starlight

\vec{B}_{\perp} half-vectors from 8 662 stars

The second state of the s

- In the halo : \vec{B}_{ord} has a vertical component ,

Katia FERRIÈRE Observations and models of interstella

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization of starlight

Stars have accurately measured distances (with Gaia) Stars have accurately measured distances (with Gaia) Stars have accurately measured distances (with Gaia)

Stellar polarization cube of nearby ISM

3 layers at 0 – 20 pc 20 – 40 pc 40 – 60 pc

Credit: Marta Alves

-

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization of dust thermal emission

Total intensity & \vec{B}_{\perp} half-vectors at 353 GHz (Planck)

Planck collaboration (2015)

- \square In the disk : \vec{B}_{ord} is horizontal
 - In the halo : \vec{B}_{ord} has a vertical component

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization of dust thermal emission

- reference on the second secon
 - Magnetic fluctuations : $\frac{B_{\text{fluct}}}{B_{\text{ord}}}$ - Grain properties & alignment efficiency : $p_{\max} \& F_{\text{align}}$ Katia FERBIÈRE Observations and models of interstellar magn

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Polarization of dust thermal emission

Planck collaboration (2015)

Solution Anti-correlation between
$$p = \frac{P}{T}$$
 & $S = \sqrt{\langle (\Delta \psi)^2 \rangle}$

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Magnetic field orientation in dust filaments

Galactic fields from the Herschel Galactic cold core (GCC) key-program with \vec{B}_{\perp} half-vectors from Planck (353 GHz)

Credit: Jonathan Oers (PhD student of Isabelle Ristorcelli & Katia Ferrière)

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Magnetic field orientation in dust filaments

Galactic fields from the Herschel Galactic cold core (GCC) key-program with \vec{B}_{\perp} half-vectors from Planck (353 GHz)

Katia FERRIÈRE

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Outline

Introduction

2 Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Physical concept

Relativistic electrons gyrating about magnetic field lines emit *synchrotron radiation*

Credit: Philippe Terral

Katia FERRIÈRE Observations and models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Total & polarized intensities

Emissivity: $\mathcal{E} = f(\alpha) n_{\text{CRe}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \& \quad \mathcal{E}_{\text{pol}} = p_{\text{syn}} \mathcal{E} \quad \& \quad \overleftrightarrow{\mathcal{E}}_{\text{pol}} \perp \mathbf{B}_{\perp}$

- Total intensity : $I = \int \mathcal{E} \, ds$ $\mathbb{S} B_{\perp}$
- Polarized intensity: $\overrightarrow{P} = \int \overleftrightarrow{\mathcal{E}}_{\text{pol}} ds \quad \bowtie \quad (\overleftrightarrow{B}_{\perp})_{\text{ord}}$

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Total & polarized intensities

Emissivity: $\mathcal{E} = f(\alpha) n_{\text{CRe}} \frac{B_{\perp}}{\nu}^{\alpha+1} \nu^{-\alpha} \quad \& \quad \mathcal{E}_{\text{pol}} = p_{\text{syn}} \mathcal{E} \quad \& \quad \overleftrightarrow{\mathcal{E}}_{\text{pol}} \perp \overrightarrow{B}_{\perp}$

- Total intensity : $I = \int \mathcal{E} \, ds$ \mathbb{R}
- Polarized intensity : $\overleftrightarrow{P} = \int \overleftrightarrow{\mathcal{E}}_{pol} ds \qquad \bowtie \qquad (\overleftrightarrow{B}_{\perp})_{ord}$

$$Q + i U = \int \mathcal{E}_{\text{pol}} e^{2i\psi} \, ds$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Total & polarized intensities

- \mathbb{R} Near the Sun : $B_{\text{ord}} \sim 3 \,\mu\text{G}$ & $B_{\text{tot}} \sim 5 \,\mu\text{G}$
 - In the disk : \vec{B}_{ord} is horizontal
 - In the halo : \vec{B}_{ord} has a vertical component

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Fluctuations in synchrotron intensity

Theoretical developments (Lazarian & Pogosyan 2012)

- & numerical simulations (Herron et al. 2016)
- Synchrotron intensity fluctuations are anisotropic, forming filaments $\| \vec{B}_{\perp} \|$

Synchrotron total intensity map

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Fluctuations in synchrotron intensity

Synchrotron intensity gradients \mathbf{w} orientation of \vec{B}_{\perp}

Synchrotron intensity gradients & polarization half-vectors (Planck)

Lazarian et al. (2017)

イロト イボト イヨト イヨ

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Outline

Introduction

2 Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium, the orientation of linear polarization undergoes *Faraday rotation*

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium, the orientation of linear polarization undergoes *Faraday rotation*

Credit: Theophilus Britt Griswold (NASA Goddard)

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Rotation angle & rotation measure

Rotation angle : $\Delta \psi = \mathbf{RM} \lambda^2$

Rotation measure :

$$\mathbf{RM} = C \int n_{\mathrm{e}} \mathbf{B}_{\parallel} \, ds \qquad \text{is}$$

Credit: Theophilus Britt Griswold (NASA Goddard)

 B_{\parallel}

Rotation measures

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$

 $\mathbb{I} = -\text{Near the Sun} : \frac{B_{\text{reg}}}{B_{\text{reg}}} \approx \frac{1.5 \ \mu\text{G}}{B_{\text{tot}}} & \frac{B_{\text{tot}}}{5 \ \mu\text{G}} \\ \frac{B_{\text{reg}}}{B_{\text{reg}}} \text{ is nearly azimuthal } (\simeq -8^{\circ} \text{ from } \hat{e}_{\phi})$

- In the disk : \vec{B}_{reg} is horizontal & mostly azimuthal, with *reversals* in B_{ϕ} \vec{B}_{reg} probably has a spiral shape

- In the halo : \vec{B}_{reg} is CCW at z > 0 & CW at z < 0 \vec{B}_{reg} possibly has an upward spiraling shape

Rotation measures

van Eck et al. (2011)

- $\mathbb{I} = -\text{Near the Sun} : \frac{B_{\text{reg}}}{B_{\text{reg}}} \approx \frac{1.5 \,\mu\text{G}}{B_{\text{tot}}} & \frac{B_{\text{tot}}}{5 \,\mu\text{G}} \\ \frac{B_{\text{reg}}}{B_{\text{reg}}} \text{ is nearly azimuthal } (\simeq -8^{\circ} \text{ from } \hat{e}_{\phi})$
 - In the disk : \vec{B}_{reg} is horizontal & mostly azimuthal, with *reversals* in B_{ϕ} \vec{B}_{reg} probably has a spiral shape
 - In the halo : \vec{B}_{reg} is CCW at z > 0 & CW at z < 0 \vec{B}_{reg} possibly has an upward spiraling shape

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Outline

Introduction

2 Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

3 Models

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Physical concept

Atom/molecule with nonzero (electronic) angular momentum has (high) magnetic moment

Coupling between magnetic moment & external magnetic field splits energy levels with $j \neq 0$ into 2j+1 sublevels (m = -j, ..., +j) \Rightarrow leads to *splitting* of spectral lines

Splitting:
$$\Delta v = \frac{1}{4\pi} \Omega_e = \frac{eB}{4\pi m_e c}$$

In principle: - splitting strength of \vec{B} - polarization strength of \vec{B}

・ロト ・四ト ・ヨト・ヨト・

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

Magnetic field strength

Crutcher et al. (2010)

イロト イヨト イヨト イヨト

Outline

Observations

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

æ

Large-scale models

Very difficult to construct a complete and realistic model of $\langle \vec{B} \rangle$

- 1. The Galactic magnetic field is inherently complex
 - \vec{B} has a significant turbulent component rightarrow Need a realistic description of $\delta \vec{B}$
 - \vec{B} is different in the different ISM phases ^{III} Must exploit the different tracers
 - $\langle \vec{B} \rangle$ varies in space in a non-analytical manner Analytical models don't give a fair description

Large-scale models

Very difficult to construct a complete and realistic model of $\langle \vec{B} \rangle$

- 2. Observational tracers have important limitations They are generally
 - Indirect

They also depend on dust, CR electrons, or thermal electrons

- Incomplete

They do not lead to the full \vec{B} (only \vec{B}_{\perp} or B_{\parallel})

- Two-dimensional

They provide only LoS-integrated quantities

- Affected by
 - turbulent fluctuations
 - our position inside the Local Bubble

Large-scale models

Very difficult to construct a complete and realistic model of $\langle \vec{B} \rangle$

- 2. Observational tracers have important limitations
 - Difficult to get the full picture ß

Existing large-scale models

Analytical models

- May include some physically motivated constraints
- Free parameters fit to observational data (synchrotron emission, Faraday rotation)

3 models of the large-scale magnetic field in the Galactic disk & halo

イロト イヨト イヨト イヨト

Existing large-scale models

• Analytical models

- May include some physically motivated constraints
- Free parameters fit to observational data (synchrotron emission, Faraday rotation)

Improved model of the large-scale magnetic field in the Galactic halo: X-shaped magnetic field wound up by Galactic rotation

Unger & Farrar (2019)

イロト イヨト イヨト イヨト

Existing large-scale models

• Physical models

- Solutions of mean-field dynamo equation
- Optimized against observational data

of interstellar magn

Katia FERRIÈRE

Small-scale models

Hourglass-shaped magnetic field in the OMC-1 cloud in Orion A

Small-scale models

Shocked magnetic field & filament formation

ヘロト ヘヨト ヘヨト ヘヨト

Inoue et al. (2018)

æ