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Introduction

Early history

@ Alfvén (1937)
= Cosmic-ray confinement implies
"the existence of a magnetic field in interstellar space”

@ Fermi (1949)
= "The main process of [cosmic-ray] acceleration
is due to [interstellar] magnetic fields ...
The magnetic field in the dilute matter is ~ 5 uG,
while its intensity is probably greater in the heavier clouds”

@ Hall; Hiltner (1949) ; Davis & Greenstein (1951)
= Linear polarization of starlight

= Due to elongated dust grains aligned by an interstellar magnetic field

@ Kiepenheuer (1950)
== Galactic radio synchrotron emission

Credit: Bryan Gaensler
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Introduction

Observational tools

@ Polarization of starlight & dust thermal emission
Due to dust grains — general (dusty) ISM
w B, (orientation only)

@ Synchrotron emission
Produced by CR electrons — general (CR-filled) ISM
w B, (strength & orientation)

@ Faraday rotation .
Caused by thermal electrons — ionized regions i
& By (strength & sign) pLt N\

@ Zeeman splitting
Molecular & atomic spectral lines — neutral regions i "T
w B (strength & sign) ' %_#
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Physical concept

Dust grains tend to spin about their short axes
& to align their spin axes with B

This grain alignement leads to linear polarization

Credit: Wen-Ping Chen
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Polarization orientation

- Starlight attenuated by dust (optical) is polarized || B,
- Dust thermal emission (infrared) is polarized L B,

Credit: Wen-Ping Chen
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Polarization fraction

P - Starlight attenuated by dust : p = 7 pg cos®y
P= - Dust thermal emission : p = p, cos’ y
L> PO = Pmax Falign Fsp
B € PoS B L PoS
(cos2 y= ]) (cos2 y = O)
= p=po = p=0

Credit: Vincent Guillet
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Dust polarization

Altogether

- Polarization orientation w  orientation of B in PoS

- Polarization fraction w  jnclination of B to PoS (for ideal conditions)
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Polarization of starlight

B, half-vectors from 8662 stars

center
local fielt:\ antipode
L L

Loop I
local field‘ direction Gphi\fchus

Heiles (2000)
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i Nearthe Sun - In the disk : B, is horizontal
B, is nearly azimuthal (= -7° from &,)

=2 .
- In the halo : B4 has a vertical component
of interstellar ma
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Polarization of starlight

Stars have accurately measured distances (with Gaia)
w Possible to probe B in 3D

Stellar polarization cube of nearby ISM

3 layers at
0-20pc
20 -40pc
40 - 60 pc

Credit: Marta Alves
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Polarization of dust thermal emission
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Planck collaboration (2015)

-

== - |n the disk : B, is horizontal

- Inthe halo : Eo,d has a vertical component
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Polarization of dust thermal emission

Polarization fraction at 353 GHz (Planck)

Planck collaboration (2015)

= |nfo on - Inclination of ﬁord to PoS: cos’y
- Magnetic fluctuations : %“‘{Z‘

- Grain properties & alignment efficiency :  pmax & Faiign

ia FERRIERE Observations ai els
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Polarization of dust thermal emission

Pipe Nebula at 353 GHz (Planck)
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Planck collaboration (2015)

== Anti-correlation between p = 173 & S = \{(Ay)?)y
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Dust polarization

Observations

Galactic fields from the Herschel Galactic cold core (GCC) key-program
with B, half-vectors from Planck (353 GHz)

G110.62-12.49 G300.86-9.00
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Credit: Jonathan Oers (PhD student of Isabelle Ristorcelli & Katia Ferriere)
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Zeeman splitting

Magnetic field orientation in dust filaments

Galagtic fields from the Herschel Galactic cold core (GCC) key-program
with B, half-vectors from Planck (353 GHz)
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Carriere et al. (2022)
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Physical concept

Relativistic electrons gyrating about magnetic field lines
emit synchrotron radiation

N

‘@

Credit: Philippe Terral
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Total & polarized intensities

Emissivity : & =(a) texe BL™ v &  Epi =pyn & & Epo L B,

- Total intensity : I = f&ds = B
- Polarized intensity : P = (gpol ds =y (?l)m.d
[}

Credit: Philippe Terral @
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Total & polarized intensities

Emissivity : & =(a) texe BL™ v &  Epi =pyn & & Epo L B,

- Total intensity : I = f&ds = B

- Polarized intensity : P = f (gpol ds = (?l)m-d

of interstellar ma
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Total & polarized intensities

Tl at 1.4 GHz (25m Stockert + 30m Villa Elisa) Pl & B | half-vectors at 23 GHz (wmAP)

Credit: Tess Jaffe Credit: Tesasgejsaffe

- Nearthe Sun: By ~ 3 uG & By ~ 5 uG

- In the disk : By, is horizontal
- Inthe halo : ﬁord has a vertical component
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Fluctuations in synchrotron intensity

Theoretical developments (Lazarian & Pogosyan 2012)
& numerical simulations (Herron et al. 2016)

s Synchrotron intensity fluctuations are anisotropic, forming filaments || B,

Synchrotron total intensity map

Line of
Sight

Mean Magnetic Field

Herron et al. (2016)
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Fluctuations in synchrotron intensity

Synchrotron intensity gradients = orientation of B,

Synchrotron |nten3|ty gradlents & polarlzatlon half-vectors (Planck)
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Lazarian et al. (2017)
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Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium,
the orientation of linear polarization undergoes Faraday rotation

L mode R mode E,
s=0 .-" : \
: + : : =
t=0 \ K \ '.' E
OB :
L mode R mode ‘.‘
E,
PET JUTTa, Ay

s>0 fE ECI
V. : !
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Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium,
the orientation of linear polarization undergoes Faraday rotation

SOURCE

OBSERVER

Credit: Theophilus Britt Griswold (NASA Goddard)
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Rotation angle & rotation measure

Rotation angle: Ay = RM A*

Rotation measure : RM = C fnc By ds = B

SOURCE

OBSERVER
Credit: Theophilus Britt:Griswold (NASA-Goddard)
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Rotation measures

RMs of pulsars & EGRSs with |b] < 8°

RMs of EGRSs [NVSS (5 > —40°) + S-PASS (5 < 0°)]

40 o 320 280 240 200
Gal. longitude (°)

160 120 80

Schnitzeler et al. (2019)
Han (2009)

= - Near the Sun : By, = 1.5 uG & By, ~ 5 uG
B, is nearly azimuthal (=~ —8° from 2,)

- In the disk : ﬁ,eg is horizontal & mostly azimuthal, with reversalsin B,
B‘reg probably has a spiral shape

-Inthe halo : B, is CCWatz>0 & CWatz <0
Ereg possibly has an upward spiraling shape



Rotation measures

In the disk

In the halo

outer Galaxy

' Terral & Ferriére (2017)

van Eck et al. (2011)

1= - Nearthe Sun: B,y ~ 1.5 uG & By ~ 5 uG
ﬁrcg is nearly azimuthal (=~ —8° from &)

- In the disk : ﬁreg is horizontal & mostly azimuthal, with reversalsin B,
ﬁreg probably has a spiral shape

- In the halo:B?reg isCCWatz>0 & CWatz<0
Ereg possibly has an upward spiraling shape
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Physical concept

Atom/molecule with nonzero (electronic) angular momentum
has (high) magnetic moment

Coupling between magnetic moment & external magnetic field
splits energy levels with j#0 into 2j+1 sublevels (m = —j,...,+j)
= leads to splitting of spectral lines

1 eB
Splitting: Ay = — Q. =
P g- av 47 ~° 4rme c
In principle: - splitting = strength of B
- polarization w  direction of B
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Magnetic field strength

' ‘i
1000 | - =& -|n atomic clouds :
B ~ afew uG
100 + 4
= - In molecular clouds :
% ny 0.65
s | B < (10 4G) (7)
" K 300 cm™3
L ]
0.1 L !

10’ 107

Crutcher et al. (2010)
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Models

Large-scale models

Very difficult to construct a complete and realistic model of (B)

1. The Galactic magnetic field is inherently complex

- Bhasa significant turbulent component
= Need a realistic description of 5B

- B is different in the different ISM phases
== Must exploit the different tracers

- (ﬁ) varies in space in a non-analytical manner
= Analytical models don't give a fair description

tia FERRIERE Observations
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Models

Large-scale models

Very difficult to construct a complete and realistic model of (B)

2. Observational tracers have important limitations
They are generally

- Indirect
They also depend on dust, CR electrons, or thermal electrons

- Incomplete
They do not lead to the full B (only B, or B))

- Two-dimensional
They provide only LoS-integrated quantities

- Affected by

- turbulent fluctuations
- our position inside the Local Bubble

Observations of interstellar magn



Models

Large-scale models

Very difficult to construct a complete and realistic model of (B)

2. Observational tracers have important limitations
= Difficult to get the full picture

Credit: Tess Jaffe
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Models

Existing large-scale models

@ Analytical models
- May include some physically motivated constraints
- Free parameters fit to observational data (synchrotron emission, Faraday rotation)

3 models of the large-scale magnetic field in the Galactic disk & halo

Sun10b B coherent Jansson12b B coherent Jaffe13b B coherent
of §
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Planck collaboration (2016)
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Models

Existing large-scale models

@ Analytical models
- May include some physically motivated constraints
- Free parameters fit to observational data (synchrotron emission, Faraday rotation)

Improved model of the large-scale magnetic field in the Galactic halo:

X-shaped magnetic field wound up by Galactic rotation

Unger & Farrar (2019)
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Models

Existing large-scale models

@ Physical models
- Solutions of mean-field dynamo equation
- Optimized against observational data

dipolar (z=4.5kpe)

dipolar  (y = Okpe)

18 -
o _
w £ 128
-12 o
x[kpel
e
_ _

Shukurov et al. (2019)

ia FERRIERE of interstellar mag



Models

Small-scale models

Hourglass-shaped magnetic field in the OMC-1 cloud in Orion A
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Pattle et al. (2017)
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Models

Small-scale models

Shocked magnetic field & filament formation

1 shock SHaK

dense clump
in cloud 8

Inoue et al. (2018)
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