type protostar IRAS 16293-2422 with ALMA

Audrey Coutens (IRAP)

PILS team : J.K. Jørgensen (PI), Per Bjerkeli, Tyler Bourke, Hannah Calcutt, Audrey Coutens, Maria Drozdovskaya, Edith Fayolle, Rob Garrod, Steffen Jacobsen, Niels Ligterink, Julie Lykke, Sebastien Manigand, Holger Müller, Nadia Murillo, Karin Öberg, Magnus Persson, Gwendoline Stephan, Matthijs van der Wiel, Ewine van Dishoeck, Susanne Wampfler & Eric Willis

340 55 Freq [GHz]

360

330

Star formation process

Star formation process

Star formation process

- * Origin of the molecular complexity ?
- What is the level of molecular complexity in star-forming regions ?

Comets & asteroids (meteorites) rich in amino acids and sugars

Murchison Meteorite

Meteorite

Star formation process

Warm inner regions of protostellar envelopes (T > 100 K, ~ 100 au) in which COMs are detected

Most molecules in solid phase

The solar-type protostar IRAS 16293-2422

- Class 0 protostellar system
- Ophiuchus molecular cloud, d ~ 160 pc
- First solar-type protostar with COMs detection (*Cazaux et al. 2003*)
- High deuteration

Spectral surveys :

- CSO + JCMT (239-250 GHz and 338-347 GHz) *van Dishoeck et al.* 1995
- TIMASSS : IRAM-30m + JCMT (0.9-3 mm)
 Caux et al. 2011
- SMA (~0.9 and ~1 mm) Jørgensen et al. 2011

The ALMA-PILS survey

- PILS = Protostellar Interferometric Line Survey
- ALMA band 7 (329-363 GHz)
- Complementary observations in bands 3 and 6
- ALMA 12m array (13 h) + ACA (53 h)
- Spectral resolution ~ 0.2 km/s
- Angular resolution ~ 0.5" (60 AU)
- rms ~ 5 mJy (1 km/s)

Jørgensen et al. 2016

The ALMA-PILS survey

Characterizing the molecular content in protostars

- Spectroscopy (CDMS, JPL, …)
 - Frequencies
 - Relative intensities

- Radiative transfer modeling
 - Line identification
 - Abundance, temperature, ...
 - Kinematics (infall, rotation, ...)

Kinematic and modeling study of IRAS 16293-2422

- The bridge arc could be a remnant of filamentary substructure in the protostellar envelope material from which protostellar sources A and B have formed
- Infalling rotating collapse or protoplanetary disk
- Source A at least 3 times (18 L_{sol}) more luminous than B (3 L_{sol})

van der Wiel et al. 2019

Jacobsen et al. 2018

Publications

- Müller, H. S. P. et al. "Rotational spectroscopy of mono-deuterated oxirane (c-C₂H₃DO) and its detection towards IRAS 16293-2422 B", 2022 A&A in press
- Koucky, J, et al., "Millimetre-wave spectroscopy of 2-hydroxyprop-2-enal and an astronomical search with ALMA", 2022, A&A in press
- Coutens, A, et al., "The ALMA-PILS survey: First tentative detection of 3-hydroxypropenal (HOCHCHCHO) in the interstellar medium and chemical modeling of the C₃H₄O₂ isomers", <u>2022, A&A 660, L6</u>
- Richard, C., et al. "Torsional-rotational spectrum of doubly-deuterated dimethyl ether (CH₃OCHD₂): first ALMA detection in the interstellar medium", <u>2021, A&A</u>
- Manigand, S., et al. "The ALMA-PILS survey: first detection of the unsaturated 3-carbon molecules Propenal (C₂H₃CHO) and Propylene (C₃H₆) towards IRAS 16293– 2422 B", <u>2021, A&A 645, A53</u>
- Jørgensen, J. K, Belloche, A., & Garrod, R., "Astrochemistry During the Formation of Stars", 2020, ARA&A, 58,727
- Manigand, S., et al. "The ALMA-PILS survey: Inventory of complex organic molecules towards IRAS 16293–2422 A", 2020, A&A 635, A48
- van 't Hoff, M. L. R., et al., "Temperature profiles of young disk-like structures: The case of IRAS 16293A", 2020, A&A 633, A7
- Jørgensen, J. K & The PILS team, "The ALMA-PILS Survey: New insights into the complex chemistry of young stars", Proceedings of IAU Symp. 345, pp. 132-136
- Calcutt, H., et al. "The ALMA-PILS survey: propyne (CH₃CCH) in IRAS 16293-2422", <u>2019</u>, <u>A&A</u>, <u>631</u>, <u>A137</u>
- Drozdovskaya, M. N., et al. "Ingredients for Solar-like Systems: protostar IRAS 16293-2422 B versus comet 67P/Churyumov-Gerasimenko", 2019, MNRAS, 490, 50
- van der Wiel, M. H. D., et al. "The ALMA-PILS survey: gas dynamics in IRAS 16293-2422 and the connection between its protostars", 2019, A&A, 626, A93
- Coutens, A., et al. "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium", 2019, A&A, 623, A93
- Coutens, A., et al. "Laboratory spectroscopic study of the N isotopomers of cyanamide, NH₂CN, and a search for them toward IRAS 16293-2422 B", <u>2019, A&A, 623, L13</u>
- Zakharenko, O., et al. "Deuterated methyl mercaptan (CH₃SD): Laboratory rotational spectroscopy and search toward IRAS 16293-2422 B", 2019, A&A, 621, A114
- Manigand, S., et al. "The ALMA-PILS survey: The first detection of doubly-deuterated methyl formate (CHD₂OCHO) in the ISM", 2019, A&A, 623, A69
- Jørgensen, J. K., et al. "The ALMA-PILS survey: Isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B", <u>2018, A&A, 620, A170</u>
- Ligterink, N. F. W., et al. "The formation of peptide-like molecules on interstellar dust grains", 2018, MNRAS, 480, 3628
- Ligterink, N. F. W., et al. "The ALMA-PILS survey: Stringent limits on small amines and nitrogen-oxides towards IRAS 16293–2422B", 2018, A&A, 619, A28
- Calcutt, H., et al. "The ALMA-PILS survey: first detection of methyl isocyanide (CH₃NC) in a solar-type protostar", 2018, A&A, 617, A95
- Murillo, N., et al. "Tracing the cold and warm physico-chemical structure of deeply embedded protostars: IRAS 16293-2422 versus VLA 1623-2417", 2018, A&A, 617, A120
- Calcutt, H., et al. "The ALMA-PILS survey: Complex nitriles towards IRAS 16293-2422", 2018, A&A, 616, A90
- Coutens, A., et al. "First detection of cyanamide (NH₂CN) towards solar-type protostars", <u>2018, A&A, 612, 107</u>
- Drozdovskaya, M. N., et al. "The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293–2422 B and 67P/Churyumov–Gerasimenko", 2018, MNRAS, 476, 4949
- Jacobsen, S. K., et al. "The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293–2422", 2018, A&A, 612, A72
- Persson, M. V., et al. "The ALMA-PILS survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293–2422B", 2018, A&A, 610, A45
- Fayolle, E. C., et al. "Protostellar and Cometary Detections of Organohalogens", 2017, Nature Astronomy, 1, 703
- Zingsheim, O., et al. "Millimeter and submillimeter wave spectroscopy of propanal", 2017, J. Mol. Spectrosc., 342, 125
- Ligterink, N. F. W., et al. "The ALMA-PILS survey: Detection of CH₃NCO toward the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation", 2017, MNRAS, 469, 2219
- Lykke, J. M., et al. "The ALMA-PILS Survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422 with ALMA", 2017, A&A, 597, A53
- Jørgensen, J. K., et al. "The ALMA-PILS Survey. First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA", 2016, A&A, 595, A117
- Coutens, A, et al. "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium", <u>2016, A&A Letters</u>, <u>590, L6</u>

Publications

- Müller, H. S. P. et al. "Rotational spectroscopy of mono-deuterated oxirane (c-C₂H₃DO) and its detection towards IRAS 16293-2422 B", 2022 A&A in press
- Koucky, J, et al., "Millimetre-wave spectroscopy of 2-hydroxyprop-2-enal and an astronomical search with ALMA", 2022, A&A in press
- Coutens, A, et al., "The ALMA-PILS survey: First tentative detection of 3-hydroxypropenal (HOCHCHCHO) in the interstellar medium and chemical modeling of the C₃H₄O₂ isomers", <u>2022, A&A 660, L6</u>
- Richard, C., et al. "Torsional-rotational spectrum of doubly-deuterated dimethyl ether (CH₃OCHD₂): first ALMA detection in the interstellar medium", <u>2021, A&A</u>
- Manigand, S., et al. "The ALMA-PILS survey: first detection of the unsaturated 3-carbon molecules Propenal (C₂H₃CHO) and Propylene (C₃H₆) towards IRAS 16293– 2422 B", <u>2021, A&A 645, A53</u>
- Jørgensen, J. K, Belloche, A., & Garrod, R., "Astrochemistry During the Formation of Stars", 2020, ARA&A, 58,727
- Manigand, S., et al. "The ALMA-PILS survey: Inventory of complex organic molecules towards IRAS 16293–2422 A", 2020, A&A 635, A48
- van 't Hoff, M. L. R., et al., "Temperature profiles of young disk-like structures: The case of IRAS 16293A", 2020, A&A 633, A7
- Jørgensen, J. K & The PILS team, "The ALMA-PILS Survey: New insights into the complex chemistry of young stars", Proceedings of IAU Symp. 345, pp. 132-136
- Calcutt, H., et al. "The ALMA-PILS survey: propyne (CH₃CCH) in IRAS 16293-2422", <u>2019, A&A, 631, A137</u>
- Drozdovskaya, M. N., et al. "Ingredients for Solar-like Systems: protostar IRAS 16293-2422 B versus comet 67P/Churyumov-Gerasimenko", 2019, MNRAS, 490, 50
- van der Wiel, M. H. D., et al. "The ALMA-PILS survey: gas dynamics in IRAS 16293-2422 and the connection between its protostars", 2019, A&A, 626, A93
- Coutens, A., et al. "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium", 2019, A&A, 623, A93
- Coutens, A., et al. "Laboratory spectroscopic study of the N isotopomers of cyanamide, NH₂CN, and a search for them toward IRAS 16293-2422 B", <u>2019, A&A, 623, L13</u>
- Zakharenko, O., et al. "Deuterated methyl mercaptan (CH₃SD): Laboratory rotational spectroscopy and search toward IRAS 16293-2422 B", 2019, A&A, 621, A114
- Manigand, S., et al. "The ALMA-PILS survey: The first detection of doubly-deuterated methyl formate (CHD₂OCHO) in the ISM", 2019, A&A, 623, A69
- Jørgensen, J. K., et al. "The ALMA-PILS survey: Isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B", <u>2018, A&A, 620,</u> <u>A170</u>
- Ligterink, N. F. W., et al. "The formation of peptide-like molecules on interstellar dust grains", 2018, MNRAS, 480, 3628
- Ligterink, N. F. W., et al. "The ALMA-PILS survey: Stringent limits on small amines and nitrogen-oxides towards IRAS 16293-2422B", 2018, A&A, 619, A28
- Calcutt, H., et al. "The ALMA-PILS survey: first detection of methyl isocyanide (CH₃NC) in a solar-type protostar", 2018, A&A, 617, A95
- Murillo, N., et al. "Tracing the cold and warm physico-chemical structure of deeply embedded protostars: IRAS 16293-2422 versus VLA 1623-2417", 2018, A&A, 617, A120
- Calcutt, H., et al. "The ALMA-PILS survey: Complex nitriles towards IRAS 16293–2422", 2018, A&A, 616, A90
- Coutens, A., et al. "First detection of cyanamide (NH₂CN) towards solar-type protostars", <u>2018, A&A, 612, 107</u>
- Drozdovskaya, M. N., et al. "The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293–2422 B and 67P/Churyumov– Gerasimenko", 2018, MNRAS, 476, 4949
- Jacobsen, S. K., et al. "The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293–2422", 2018, A&A, 612, A72
- Persson, M. V., et al. "The ALMA-PILS survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293–2422B", 2018, A&A, 610, A45
- Fayolle, E. C., et al. "Protostellar and Cometary Detections of Organohalogens", 2017, Nature Astronomy, 1, 703
- Zingsheim, O., et al. "Millimeter and submillimeter wave spectroscopy of propanal", 2017, J. Mol. Spectrosc., 342, 125
- Ligterink, N. F. W., et al. "The ALMA-PILS survey: Detection of CH₃NCO toward the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation", 2017, MNRAS, 469, 2219
- Lykke, J. M., et al. "The ALMA-PILS Survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422 with ALMA", 2017, A&A, 597, A53
- Jørgensen, J. K., et al. "The ALMA-PILS Survey. First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA", <u>2016, A&A, 595, A117</u>
- Coutens, A, et al. "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium", <u>2016, A&A Letters</u>, <u>590, L6</u>

Why do all these detections matter?

- Knowledge of the chemistry at an early stage of the star formation process
- Comparison with comets (e.g., 67P Rosetta)
- Tests of chemical networks through the comparison between the observed and predicted abundances
- Updates of chemical networks for the species which were not previously included
- Comparisons between star forming regions : chemical differentiation ? Evolution or environment?

Lykke et al. (2017)

- Gas-grain chemistry model
- Possible formation of NH₂CN through the NH₂ + CN reaction on grains

- Laboratory experiments
- VUV irradiation of CH₄:HNCO mixtures at 20 K
- Formation on grains through CH₃ and (H)NCO recombinations

Ligterink et al. 2017

Methyl chloride (CH₃Cl) *Fayolle et al. 2017*

Nitrous acid (HONO) Coutens et al. 2019

3-hydroxypropenal (HOCHCHCHO) Coutens et al. 2022

+ a lot of isotopologues !

Methyl chloride (CH₃Cl) *Fayolle et al. 2017*

Nitrous acid (HONO) Coutens et al. 2019

3-hydroxypropenal (HOCHCHCHO) Coutens et al. 2022

Methyl chloride (CH₃Cl) *Fayolle et al. 2017*

Nitrous acid (HONO) Coutens et al. 2019

3-hydroxypropenal (HOCHCHCHO) Coutens et al. 2022

Molecule	Formula	$N_{\rm tot}^{\dagger} ({\rm cm}^{-2})$	$T_{\rm ex}$ (K)
Nitrous acid	HONO	$(9 \pm 5) \times 10^{14}$	100
Nitric oxide [‡]	NO	$(2.0 \pm 0.5) \times 10^{16}$	40-150
Nitrous oxide [‡]	N_2O	$\geq 4.0 \times 10^{16}$	25-350
Hydroxylamine [‡]	NH ₂ OH	$\leq 4 \times 10^{14}$	[100]
Nitrosyl hydride	HNO	$\leq 3 \times 10^{14}$	[100]
Nitrogen dioxide	NO_2	$\leq 2 \times 10^{16}$	[100]
Nitrosyl cation	NO^+	$\leq 2 \times 10^{14}$	[100]
Nitric acid	HNO ₃	$<5 \times 10^{14}$	[100]

 Production on grains through s-O + s-HNO, s-H + s-NO₂, and s-OH + s-NO surface reactions

Nitrous acid (HONO) *Coutens et al. 2019*

3-hydroxypropenal (HOCHCHCHO) Coutens et al. 2022

Major update of the chemical network to include 3-carbon species (J.-C. Loison, ISM)

Unsaturated 3-carbon molecules

Propylene (C₃H₆)

Manigand et al. 2021, Lykke et al. 2017

Species	$T_{\rm ex}$ (K)	$N_{\rm tot}~({\rm cm}^{-2})$
C ₂ H ₃ CHO	125 ± 25	$3.4 \pm 0.7 \times 10^{14}$
C_3H_6	75 ± 15	$4.2 \pm 0.8 \times 10^{16}$
HCCCHO	100 ^(a)	$< 5.0 \times 10^{14}$
<i>n</i> -C ₃ H ₇ OH	100 ^(a)	$<3.0 \times 10^{15}$
<i>i</i> -C ₃ H ₇ OH	100 ^(a)	$< 3.0 \times 10^{15}$
C ₃ O	100 ^(a)	$< 2.0 \times 10^{13}$
cis-HC(O)CHO	100 ^(a)	$< 5.0 \times 10^{13}$
C_3H_8	100 ^(a)	$< 8.0 \times 10^{16}$
CH ₃ CCH	100 ± 20	$1.1 \pm 0.2 \times 10^{16}$
C ₂ H ₅ CHO	125 ± 25	$2.2 \pm 1.1 \times 10^{15}$ (†)
CH ₃ CHO	125 ± 25	$7.0 \pm 3.5 \times 10^{16}$ (†)
CH ₃ COCH ₃	125 ± 25	$1.7 \pm 0.8 imes 10^{16}$ (†)
C ₂ H ₅ OCH ₃	100 ± 20	$1.8\pm 0.2\times 10^{16(\dagger)}$

Detection towards IRAS 16293 B

Manigand et al. 2021

- Three-phase chemistry code Nautilus (PI: V. Wakelam)
- Prestellar phase followed by a 1D hydrodynamical collapse (*Masunaga & Inutsuka 2000*)
- Tests of different formation pathways (successive hydrogenation of C₃ and C₃O and radical-radical additions on grain surfaces) to assess which are the dominant formation mechanisms

Ruaud et al. 2016

+ comparison with 2C-species

Manigand et al. 2021

Main conclusions of Manigand et al. 2021

- Impact of the duration of the prestellar phase on the abundances of the saturated vs unsaturated COMs
- Formation of C₂H₃CHO and C₂H₅CHO through both :
 - successive hydrogenation reactions on ice surfaces of C₃O, with a formation of C₃O in the gas phase (C₃ + OH −> C₃O + H)
 - radical-radical additions of HCO and C₂H₃ or C₂H₅ on ice surfaces
- Rate of 10⁻¹² cm³ s⁻¹ for the gas phase reaction C₃ + O —> C₂ + CO necessary to fit the observed abundances
- Other missing consumption pathways of C₃ (PAHs) ?

Tentative detection of 3-hydroxypropenal

3-hydroxypropenal : biomarker to measure the level of oxidative stress in living organisms

Antoine Boulanger's internship

Predicted towards source B with a Convolutional Neural Network on a large set of multi-species synthetic spectra assuming LTE (*Boulanger et al. 2022*)

Confirmation with the classical method

3-hydroxypropenal and isomers

Chemical modeling of the C₃H₄O₂ isomers

- Same physical model as in Manigand et al. 2021
- Update of the chemical network by including the reactions producing and consuming the C₃H₄O₂ isomers and some radical species linked to C₃H₄O₂
- Our model reproduces the abundance of HOCHCHCHO with respect to CH₃OH within the uncertainties (~10)
- $CH_2CHO + HCO \rightarrow HCOCH_2CHO$ $HCOCH_2CHO \rightarrow HOCHCHOO$

Collapse phase, temperature increase

Importance of spectroscopic studies

Isomer	Formula	Predicted abundance (/H)	Predicted abundance	Observed abundance (/CH ₂ OH)
2 11 1		$\frac{(11)}{14\times 10^{-8}}$	$\frac{1}{4} \left(\times 10^{-4} \right)$	$\frac{10\times 10^{-4}}{10}$
3-Hydroxypropenal	НОСНСНСНО	1.4 × 10 °	4.0×10^{-1}	1.0×10^{-1}
Propanedial	HCOCH ₂ CHO	3.0×10^{-9}	9.9×10^{-5}	
Methyl glyoxal	CH ₃ COCHO	7.4×10^{-8}	2.4×10^{-3}	
2-Hydroxypropenal	CH ₂ COHCHO	2.0×10^{-8}	6.6×10^{-4}	
Vinyl formate	C ₂ H ₃ OCHO	8.4×10^{-10}	2.8×10^{-5}	$\leq 4 \times 10^{-4}$
2-Propenoic acid	C ₂ H ₃ COOH	2.2×10^{-13}	7.3×10^{-9}	$\leq 5 \times 10^{-4}$

• Upper limits in agreement for vinyl formate and 2-propenoic acid

Importance of spectroscopic studies

Isomer	Formula	Predicted abundance	Predicted abundance	Observed abundance
		(/H)	$(/CH_3OH)$	$(/CH_3OH)$
3-Hydroxypropenal	НОСНСНСНО	1.4×10^{-8}	4.6×10^{-4}	1.0×10^{-4}
Propanedial	HCOCH ₂ CHO	3.0×10^{-9}	9.9×10^{-5}	
Methyl glyoxal	CH ₃ COCHO	7.4×10^{-8}	2.4×10^{-3}	
2-Hydroxypropenal	CH ₂ COHCHO	2.0×10^{-8}	6.6×10^{-4}	
Vinyl formate	C ₂ H ₃ OCHO	8.4×10^{-10}	2.8×10^{-5}	$\leq 4 \times 10^{-4}$
2-Propenoic acid	C ₂ H ₃ COOH	2.2×10^{-13}	7.3×10^{-9}	$\leq 5 \times 10^{-4}$

- Upper limits in agreement for vinyl formate and 2-propenoic acid
- Predictions of high abundances for propanedial, methyl glyoxal and 2hydroxypropenal

Importance of spectroscopic studies

Isomer	Formula	Predicted abundance (/H)	Predicted abundance (/CH ₃ OH)	Observed abundance (/CH ₃ OH)
3-Hydroxypropenal	НОСНСНСНО	1.4×10^{-8}	4.6×10^{-4}	1.0×10^{-4}
Propanedial	HCOCH ₂ CHO	3.0×10^{-9}	9.9×10^{-5}	
Methyl glyoxal	CH ₃ COCHO	7.4×10^{-8}	2.4×10^{-3}	
2-Hydroxypropenal	CH ₂ COHCHO	2.0×10^{-8}	6.6×10^{-4}	
Vinyl formate	C ₂ H ₃ OCHO	8.4×10^{-10}	2.8×10^{-5}	$\leq 4 \times 10^{-4}$
2-Propenoic acid	C ₂ H ₃ COOH	2.2×10^{-13}	7.3×10^{-9}	$\leq 5 \times 10^{-4}$

- Upper limits in agreement for vinyl formate and 2-propenoic acid
- Predictions of high abundances for propanedial, methyl glyoxal and 2hydroxypropenal

Spectroscopic studies are needed:

- to search for propanedial, methyl glyoxal and 2hydroxyprop-2-enal in IRAS16293 and other sources
- to test the chemical network

2-hydroxyprop-2-enal

*				
Isomer	Formula	Predicted abundance	Predicted abundan	ce Observed abundance
		(/H)	(/CH ₃ OH)	(/CH ₃ OH)
3-Hydroxypropenal	НОСНСНСНО	1.4×10^{-8}	4.6×10^{-4}	1.0×10^{-4}
Propanedial	HCOCH ₂ CHO	3.0×10^{-9}	9.9×10^{-5}	
Methyl glyoxal	CH ₃ COCHO	7.4×10^{-8}	2.4×10^{-3} Kc	oucky, Kolesnikova et al. 2022
2-Hydroxypropenal	CH ₂ COHCHO	2.0×10^{-8}	6.6×10^{-4}	< 2.4 x 10 -4
Vinyl formate	C ₂ H ₃ OCHO	8.4×10^{-10}	2.8×10^{-5}	$\leq 4 \times 10^{-4}$
2-Propenoic acid	C ₂ H ₃ COOH	2.2×10^{-13}	7.3×10^{-9}	$\leq 5 \times 10^{-4}$

- Upper limits in agreement for vinyl formate and 2-propenoic acid
- Predictions of high abundances for propanedial, methyl glyoxal and 2hydroxypropenal

Spectroscopic studies are needed:

- to search for propanedial, methyl glyoxal and 2hydroxyprop-2-enal in IRAS16293 and other sources
- to test the chemical network

First detections of isotopologues in the ISM

Formamide NH ₂ CDO cis-NHDCHO trans-NHDCHO	Glycolaldehyde CHDOHCHO CH $_2$ ODCHO CH $_2$ OHCDO 13 CH $_2$ OHCHO CH $_2$ OH ¹³ CHO	Acetaldehyde CH ₃ CDO ¹³ CH ₃ CHO CH ₃ ¹³ CHO	Formic acid H ¹³ COOH t-DCOOH t-HCOOD	Formaldehyde $H_2C^{17}O$ $D_2^{13}CO$
DNCO Cyanamide NHDCN NH ₂ ¹³ CN	Ethanol a-a-CH ₂ DCH ₂ OH a-s-CH ₂ DCH ₂ OH CH ₃ CHDOH	Oxyrane c-C ₂ H ₃ DO	Ketene ¹³ CH ₂ CO CH ₂ ¹³ CO CHDCO	
Methyl cyanide CHD ₂ CN	Methyl formate HCOOCHD ₂	Dimethyl ether CH ₃ OCHD ₂		

Coutens et al. 2016, 2018, Jørgensen et al. 2016, 2018, Persson et al. 2018, Calcutt et al. 2018, Manigand et al. 2019, Richard et al. 2021, Müller et al. 2022

Deuteration of molecules

Jørgensen et al. 2018

Deuteration of molecules

Comparison with 3D chemical modeling (Coutens et al. 2020)

Jørgensen et al. 2018

Comparison between IRAS16293 A and B

Manigand et al. 2020

- Analysis of a single position (0.6" north-east of IRAS 16293 A, narrow lines)
- Different spatial distribution of the molecules towards A would explain the differences
- The less abundant species towards A appear to be more compact

Comparison with other protostars: COMPASS

Complex Organic Molecules in Protostars with ALMA Spectral Surveys

PI/co-PIs:

co-ls:

Jes Jørgensen

Audrey Coutens Maria Drozdovskaya Jeong-Eun Lee Adele Plunkett Arnaud Belloche Jenny Bergner Daniel Harsono Ágnes Kóspál Niels Ligterink Sheng-Yuan Liu Sébastien Maret Brett McGuire Silvia Spezzano Merel van't Hoff Yao-Lun Yang

- ALMA large program (125 h)
- Unbiased line surveys of 11 lowmass protostars (diverse evolutionary stages and different environments)
- What are the physical, environmental, and evolutionary regulators of the formation of complex organics?
- Is there a universal outcome of interstellar chemistry (COMs) ?
- How much diversity in organic inventories do we expect for planetary systems?

Comparison with comets

Drozdovskaya et al. 2019

Tools for astrochemical observations

- Characterizing the chemistry of more protostars with ALMA and NOEMA
 - Chemical differentiation
 - Chemical evolution
- Development of tools for an efficient analysis of a large amount of interferometric data
 - Interface between the CASSIS software (IRAP) and the Aladin software (CDS)
 - ATOMIS: web interface to search for specific species in the ALMA archive (S. Ben Hmida, J.-M. Glorian)

See poster ATOMIS !

The CHEMical TRail In Protostars: From the deeply embedded phase to the planet-forming disk

https://aladin.u-strasbg.fr/

Summary

- Very rich chemistry in solar-type protostars
- PILS: Large and unbiased spectral survey of IRAS 16293-2422 with ALMA
- A lot of first detections both in solar-type protostars and in the ISM
- Spectroscopic studies are necessary to identify all the lines in the survey
- Chemical models can be improved and tested thanks to the high number of detected species
- Chemical network with molecules with up to 3C atoms (J.-C. Loison)
- Chemical models can also help us determine the most promising species to search for
- More ALMA data coming soon (COMPASS) to investigate the chemical differentiation

Thanks for your attention !

European Research Council Established by the European Commission

